<tr>
<th id="T_4e1bb_level0_row0" class="row_heading level0 row0" >0</th>
<td id="T_4e1bb_row0_col0" class="data row0 col0" >session_id</td>
<td id="T_4e1bb_row0_col1" class="data row0 col1" >1</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row1" class="row_heading level0 row1" >1</th>
<td id="T_4e1bb_row1_col0" class="data row1 col0" >Target</td>
<td id="T_4e1bb_row1_col1" class="data row1 col1" >Survived</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row2" class="row_heading level0 row2" >2</th>
<td id="T_4e1bb_row2_col0" class="data row2 col0" >Target Type</td>
<td id="T_4e1bb_row2_col1" class="data row2 col1" >Binary</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row3" class="row_heading level0 row3" >3</th>
<td id="T_4e1bb_row3_col0" class="data row3 col0" >Label Encoded</td>
<td id="T_4e1bb_row3_col1" class="data row3 col1" >0.0: 0, 1.0: 1</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row4" class="row_heading level0 row4" >4</th>
<td id="T_4e1bb_row4_col0" class="data row4 col0" >Original Data</td>
<td id="T_4e1bb_row4_col1" class="data row4 col1" >(100000, 18)</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row5" class="row_heading level0 row5" >5</th>
<td id="T_4e1bb_row5_col0" class="data row5 col0" >Missing Values</td>
<td id="T_4e1bb_row5_col1" class="data row5 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row6" class="row_heading level0 row6" >6</th>
<td id="T_4e1bb_row6_col0" class="data row6 col0" >Numeric Features</td>
<td id="T_4e1bb_row6_col1" class="data row6 col1" >14</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row7" class="row_heading level0 row7" >7</th>
<td id="T_4e1bb_row7_col0" class="data row7 col0" >Categorical Features</td>
<td id="T_4e1bb_row7_col1" class="data row7 col1" >3</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row8" class="row_heading level0 row8" >8</th>
<td id="T_4e1bb_row8_col0" class="data row8 col0" >Ordinal Features</td>
<td id="T_4e1bb_row8_col1" class="data row8 col1" >True</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row9" class="row_heading level0 row9" >9</th>
<td id="T_4e1bb_row9_col0" class="data row9 col0" >High Cardinality Features</td>
<td id="T_4e1bb_row9_col1" class="data row9 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row10" class="row_heading level0 row10" >10</th>
<td id="T_4e1bb_row10_col0" class="data row10 col0" >High Cardinality Method</td>
<td id="T_4e1bb_row10_col1" class="data row10 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row11" class="row_heading level0 row11" >11</th>
<td id="T_4e1bb_row11_col0" class="data row11 col0" >Transformed Train Set</td>
<td id="T_4e1bb_row11_col1" class="data row11 col1" >(69999, 17)</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row12" class="row_heading level0 row12" >12</th>
<td id="T_4e1bb_row12_col0" class="data row12 col0" >Transformed Test Set</td>
<td id="T_4e1bb_row12_col1" class="data row12 col1" >(30001, 17)</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row13" class="row_heading level0 row13" >13</th>
<td id="T_4e1bb_row13_col0" class="data row13 col0" >Shuffle Train-Test</td>
<td id="T_4e1bb_row13_col1" class="data row13 col1" >True</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row14" class="row_heading level0 row14" >14</th>
<td id="T_4e1bb_row14_col0" class="data row14 col0" >Stratify Train-Test</td>
<td id="T_4e1bb_row14_col1" class="data row14 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row15" class="row_heading level0 row15" >15</th>
<td id="T_4e1bb_row15_col0" class="data row15 col0" >Fold Generator</td>
<td id="T_4e1bb_row15_col1" class="data row15 col1" >StratifiedKFold</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row16" class="row_heading level0 row16" >16</th>
<td id="T_4e1bb_row16_col0" class="data row16 col0" >Fold Number</td>
<td id="T_4e1bb_row16_col1" class="data row16 col1" >5</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row17" class="row_heading level0 row17" >17</th>
<td id="T_4e1bb_row17_col0" class="data row17 col0" >CPU Jobs</td>
<td id="T_4e1bb_row17_col1" class="data row17 col1" >-1</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row18" class="row_heading level0 row18" >18</th>
<td id="T_4e1bb_row18_col0" class="data row18 col0" >Use GPU</td>
<td id="T_4e1bb_row18_col1" class="data row18 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row19" class="row_heading level0 row19" >19</th>
<td id="T_4e1bb_row19_col0" class="data row19 col0" >Log Experiment</td>
<td id="T_4e1bb_row19_col1" class="data row19 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row20" class="row_heading level0 row20" >20</th>
<td id="T_4e1bb_row20_col0" class="data row20 col0" >Experiment Name</td>
<td id="T_4e1bb_row20_col1" class="data row20 col1" >clf-default-name</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row21" class="row_heading level0 row21" >21</th>
<td id="T_4e1bb_row21_col0" class="data row21 col0" >USI</td>
<td id="T_4e1bb_row21_col1" class="data row21 col1" >9220</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row22" class="row_heading level0 row22" >22</th>
<td id="T_4e1bb_row22_col0" class="data row22 col0" >Imputation Type</td>
<td id="T_4e1bb_row22_col1" class="data row22 col1" >simple</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row23" class="row_heading level0 row23" >23</th>
<td id="T_4e1bb_row23_col0" class="data row23 col0" >Iterative Imputation Iteration</td>
<td id="T_4e1bb_row23_col1" class="data row23 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row24" class="row_heading level0 row24" >24</th>
<td id="T_4e1bb_row24_col0" class="data row24 col0" >Numeric Imputer</td>
<td id="T_4e1bb_row24_col1" class="data row24 col1" >mean</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row25" class="row_heading level0 row25" >25</th>
<td id="T_4e1bb_row25_col0" class="data row25 col0" >Iterative Imputation Numeric Model</td>
<td id="T_4e1bb_row25_col1" class="data row25 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row26" class="row_heading level0 row26" >26</th>
<td id="T_4e1bb_row26_col0" class="data row26 col0" >Categorical Imputer</td>
<td id="T_4e1bb_row26_col1" class="data row26 col1" >constant</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row27" class="row_heading level0 row27" >27</th>
<td id="T_4e1bb_row27_col0" class="data row27 col0" >Iterative Imputation Categorical Model</td>
<td id="T_4e1bb_row27_col1" class="data row27 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row28" class="row_heading level0 row28" >28</th>
<td id="T_4e1bb_row28_col0" class="data row28 col0" >Unknown Categoricals Handling</td>
<td id="T_4e1bb_row28_col1" class="data row28 col1" >least_frequent</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row29" class="row_heading level0 row29" >29</th>
<td id="T_4e1bb_row29_col0" class="data row29 col0" >Normalize</td>
<td id="T_4e1bb_row29_col1" class="data row29 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row30" class="row_heading level0 row30" >30</th>
<td id="T_4e1bb_row30_col0" class="data row30 col0" >Normalize Method</td>
<td id="T_4e1bb_row30_col1" class="data row30 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row31" class="row_heading level0 row31" >31</th>
<td id="T_4e1bb_row31_col0" class="data row31 col0" >Transformation</td>
<td id="T_4e1bb_row31_col1" class="data row31 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row32" class="row_heading level0 row32" >32</th>
<td id="T_4e1bb_row32_col0" class="data row32 col0" >Transformation Method</td>
<td id="T_4e1bb_row32_col1" class="data row32 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row33" class="row_heading level0 row33" >33</th>
<td id="T_4e1bb_row33_col0" class="data row33 col0" >PCA</td>
<td id="T_4e1bb_row33_col1" class="data row33 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row34" class="row_heading level0 row34" >34</th>
<td id="T_4e1bb_row34_col0" class="data row34 col0" >PCA Method</td>
<td id="T_4e1bb_row34_col1" class="data row34 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row35" class="row_heading level0 row35" >35</th>
<td id="T_4e1bb_row35_col0" class="data row35 col0" >PCA Components</td>
<td id="T_4e1bb_row35_col1" class="data row35 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row36" class="row_heading level0 row36" >36</th>
<td id="T_4e1bb_row36_col0" class="data row36 col0" >Ignore Low Variance</td>
<td id="T_4e1bb_row36_col1" class="data row36 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row37" class="row_heading level0 row37" >37</th>
<td id="T_4e1bb_row37_col0" class="data row37 col0" >Combine Rare Levels</td>
<td id="T_4e1bb_row37_col1" class="data row37 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row38" class="row_heading level0 row38" >38</th>
<td id="T_4e1bb_row38_col0" class="data row38 col0" >Rare Level Threshold</td>
<td id="T_4e1bb_row38_col1" class="data row38 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row39" class="row_heading level0 row39" >39</th>
<td id="T_4e1bb_row39_col0" class="data row39 col0" >Numeric Binning</td>
<td id="T_4e1bb_row39_col1" class="data row39 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row40" class="row_heading level0 row40" >40</th>
<td id="T_4e1bb_row40_col0" class="data row40 col0" >Remove Outliers</td>
<td id="T_4e1bb_row40_col1" class="data row40 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row41" class="row_heading level0 row41" >41</th>
<td id="T_4e1bb_row41_col0" class="data row41 col0" >Outliers Threshold</td>
<td id="T_4e1bb_row41_col1" class="data row41 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row42" class="row_heading level0 row42" >42</th>
<td id="T_4e1bb_row42_col0" class="data row42 col0" >Remove Multicollinearity</td>
<td id="T_4e1bb_row42_col1" class="data row42 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row43" class="row_heading level0 row43" >43</th>
<td id="T_4e1bb_row43_col0" class="data row43 col0" >Multicollinearity Threshold</td>
<td id="T_4e1bb_row43_col1" class="data row43 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row44" class="row_heading level0 row44" >44</th>
<td id="T_4e1bb_row44_col0" class="data row44 col0" >Clustering</td>
<td id="T_4e1bb_row44_col1" class="data row44 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row45" class="row_heading level0 row45" >45</th>
<td id="T_4e1bb_row45_col0" class="data row45 col0" >Clustering Iteration</td>
<td id="T_4e1bb_row45_col1" class="data row45 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row46" class="row_heading level0 row46" >46</th>
<td id="T_4e1bb_row46_col0" class="data row46 col0" >Polynomial Features</td>
<td id="T_4e1bb_row46_col1" class="data row46 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row47" class="row_heading level0 row47" >47</th>
<td id="T_4e1bb_row47_col0" class="data row47 col0" >Polynomial Degree</td>
<td id="T_4e1bb_row47_col1" class="data row47 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row48" class="row_heading level0 row48" >48</th>
<td id="T_4e1bb_row48_col0" class="data row48 col0" >Trignometry Features</td>
<td id="T_4e1bb_row48_col1" class="data row48 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row49" class="row_heading level0 row49" >49</th>
<td id="T_4e1bb_row49_col0" class="data row49 col0" >Polynomial Threshold</td>
<td id="T_4e1bb_row49_col1" class="data row49 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row50" class="row_heading level0 row50" >50</th>
<td id="T_4e1bb_row50_col0" class="data row50 col0" >Group Features</td>
<td id="T_4e1bb_row50_col1" class="data row50 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row51" class="row_heading level0 row51" >51</th>
<td id="T_4e1bb_row51_col0" class="data row51 col0" >Feature Selection</td>
<td id="T_4e1bb_row51_col1" class="data row51 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row52" class="row_heading level0 row52" >52</th>
<td id="T_4e1bb_row52_col0" class="data row52 col0" >Features Selection Threshold</td>
<td id="T_4e1bb_row52_col1" class="data row52 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row53" class="row_heading level0 row53" >53</th>
<td id="T_4e1bb_row53_col0" class="data row53 col0" >Feature Interaction</td>
<td id="T_4e1bb_row53_col1" class="data row53 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row54" class="row_heading level0 row54" >54</th>
<td id="T_4e1bb_row54_col0" class="data row54 col0" >Feature Ratio</td>
<td id="T_4e1bb_row54_col1" class="data row54 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row55" class="row_heading level0 row55" >55</th>
<td id="T_4e1bb_row55_col0" class="data row55 col0" >Interaction Threshold</td>
<td id="T_4e1bb_row55_col1" class="data row55 col1" >None</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row56" class="row_heading level0 row56" >56</th>
<td id="T_4e1bb_row56_col0" class="data row56 col0" >Fix Imbalance</td>
<td id="T_4e1bb_row56_col1" class="data row56 col1" >False</td>
</tr>
<tr>
<th id="T_4e1bb_level0_row57" class="row_heading level0 row57" >57</th>
<td id="T_4e1bb_row57_col0" class="data row57 col0" >Fix Imbalance Method</td>
<td id="T_4e1bb_row57_col1" class="data row57 col1" >SMOTE</td>
</tr>
</tbody></table>
(1,
{'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7fdbc0f458d0>,
'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7fdbc0f45950>,
'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7fdbc0f45750>,
'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7fdbc0f45790>,
'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7fdbd7c5a2d0>,
'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7fdbc188d650>,
'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7fdbc188d8d0>,
'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7fdbc188d490>,
'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7fdbc188d810>,
'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7fdbc0f45c90>,
'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7fdbc0857350>,
'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7fdbc0857410>,
'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7fdbc076e2d0>,
'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7fdbc076e250>,
'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7fdbc07621d0>,
'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7fdbc07620d0>,
'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7fdbc0762850>,
'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7fdbc0762890>},
False,
False,
'clf-default-name',
True,
[<pandas.io.formats.style.Styler at 0x7fdbc0f33cd0>],
{'acc': <pycaret.containers.metrics.classification.AccuracyMetricContainer at 0x7fdbc0f33590>,
'auc': <pycaret.containers.metrics.classification.ROCAUCMetricContainer at 0x7fdbc0f335d0>,
'recall': <pycaret.containers.metrics.classification.RecallMetricContainer at 0x7fdbc0f33650>,
'precision': <pycaret.containers.metrics.classification.PrecisionMetricContainer at 0x7fdbc0f337d0>,
'f1': <pycaret.containers.metrics.classification.F1MetricContainer at 0x7fdbc0f33950>,
'kappa': <pycaret.containers.metrics.classification.KappaMetricContainer at 0x7fdbc0f33b10>,
'mcc': <pycaret.containers.metrics.classification.MCCMetricContainer at 0x7fdbc0f33b90>},
StratifiedKFold(n_splits=5, random_state=1, shuffle=True),
{'USI',
'X',
'X_test',
'X_train',
'_all_metrics',
'_all_models',
'_all_models_internal',
'_available_plots',
'_gpu_n_jobs_param',
'_internal_pipeline',
'_ml_usecase',
'create_model_container',
'data_before_preprocess',
'display_container',
'exp_name_log',
'experiment__',
'fix_imbalance_method_param',
'fix_imbalance_param',
'fold_generator',
'fold_groups_param',
'fold_param',
'fold_shuffle_param',
'gpu_param',
'html_param',
'imputation_classifier',
'imputation_regressor',
'iterative_imputation_iters_param',
'log_plots_param',
'logging_param',
'master_model_container',
'n_jobs_param',
'prep_pipe',
'pycaret_globals',
'seed',
'stratify_param',
'target_param',
'transform_target_method_param',
'transform_target_param',
'y',
'y_test',
'y_train'},
'Survived',
True,
-1,
Age SibSp Fare Name Ticket Sex Pclass Embarked \
62017 -1.786066 -0.539572 -0.425227 23058.0 38.0 0.0 1.0 2.0
5005 0.274926 -0.539572 0.041264 9979.0 49.0 1.0 1.0 2.0
56849 -1.361744 -0.539572 0.215883 14486.0 49.0 0.0 1.0 2.0
42434 1.426657 -0.539572 1.209948 8350.0 21.0 0.0 0.0 0.0
54712 -1.725448 -0.539572 -0.906172 18642.0 0.0 0.0 2.0 2.0
... ... ... ... ... ... ... ... ...
50057 1.608510 -0.539572 1.938114 4224.0 49.0 1.0 0.0 2.0
98047 -0.149396 0.680848 -0.914255 21294.0 49.0 1.0 2.0 2.0
5192 -0.634335 -0.539572 -1.037225 24329.0 49.0 1.0 1.0 2.0
77708 0.820483 -0.539572 2.156857 5150.0 49.0 0.0 0.0 0.0
98539 0.396161 -0.539572 2.729733 25222.0 49.0 1.0 0.0 1.0
Cabin_A Cabin_B Cabin_C Cabin_D Cabin_E Cabin_F Cabin_G Cabin_T \
62017 0 0 0 0 0 0 0 0
5005 0 0 0 0 0 0 0 0
56849 0 0 0 0 0 0 0 0
42434 0 0 1 0 0 0 0 0
54712 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ...
50057 1 0 0 0 0 0 0 0
98047 0 0 0 0 0 0 0 0
5192 0 0 0 0 0 0 0 0
77708 0 1 0 0 0 0 0 0
98539 1 0 0 0 0 0 0 0
Cabin_X
62017 1
5005 1
56849 1
42434 0
54712 1
... ...
50057 0
98047 1
5192 1
77708 0
98539 0
[69999 rows x 17 columns],
Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False),
'lightgbm',
False,
Pipeline(memory=None,
steps=[('dtypes',
DataTypes_Auto_infer(categorical_features=[],
display_types=False, features_todrop=[],
id_columns=[],
ml_usecase='classification',
numerical_features=[], target='Survived',
time_features=[])),
('imputer',
Simple_Imputer(categorical_strategy='not_available',
fill_value_categorical=None,
fill_value_numerical=None,
numeric_st...
('scaling', 'passthrough'), ('P_transform', 'passthrough'),
('binn', 'passthrough'), ('rem_outliers', 'passthrough'),
('cluster_all', 'passthrough'),
('dummy', Dummify(target='Survived')),
('fix_perfect', Remove_100(target='Survived')),
('clean_names', Clean_Colum_Names()),
('feature_select', 'passthrough'), ('fix_multi', 'passthrough'),
('dfs', 'passthrough'), ('pca', 'passthrough')],
verbose=False),
[],
'9220',
0 1
1 0
2 0
3 0
4 1
..
99995 1
99996 0
99997 0
99998 0
99999 0
Name: Survived, Length: 100000, dtype: int64,
False,
[],
'box-cox',
{'lr': <pycaret.containers.models.classification.LogisticRegressionClassifierContainer at 0x7fdbc078af90>,
'knn': <pycaret.containers.models.classification.KNeighborsClassifierContainer at 0x7fdbc078ae50>,
'nb': <pycaret.containers.models.classification.GaussianNBClassifierContainer at 0x7fdbc078ad10>,
'dt': <pycaret.containers.models.classification.DecisionTreeClassifierContainer at 0x7fdbc078ae90>,
'svm': <pycaret.containers.models.classification.SGDClassifierContainer at 0x7fdbc078aa10>,
'rbfsvm': <pycaret.containers.models.classification.SVCClassifierContainer at 0x7fdbc078a710>,
'gpc': <pycaret.containers.models.classification.GaussianProcessClassifierContainer at 0x7fdbc078a8d0>,
'mlp': <pycaret.containers.models.classification.MLPClassifierContainer at 0x7fdbc078a550>,
'ridge': <pycaret.containers.models.classification.RidgeClassifierContainer at 0x7fdbc078a2d0>,
'rf': <pycaret.containers.models.classification.RandomForestClassifierContainer at 0x7fdbc078a990>,
'qda': <pycaret.containers.models.classification.QuadraticDiscriminantAnalysisContainer at 0x7fdbc078b210>,
'ada': <pycaret.containers.models.classification.AdaBoostClassifierContainer at 0x7fdbc078b250>,
'gbc': <pycaret.containers.models.classification.GradientBoostingClassifierContainer at 0x7fdbc078b4d0>,
'lda': <pycaret.containers.models.classification.LinearDiscriminantAnalysisContainer at 0x7fdbc078b7d0>,
'et': <pycaret.containers.models.classification.ExtraTreesClassifierContainer at 0x7fdbc078b8d0>,
'xgboost': <pycaret.containers.models.classification.XGBClassifierContainer at 0x7fdbc078bc10>,
'lightgbm': <pycaret.containers.models.classification.LGBMClassifierContainer at 0x7fdbc0f33090>,
'catboost': <pycaret.containers.models.classification.CatBoostClassifierContainer at 0x7fdbc078afd0>,
'Bagging': <pycaret.containers.models.classification.BaggingClassifierContainer at 0x7fdbc0762ed0>,
'Stacking': <pycaret.containers.models.classification.StackingClassifierContainer at 0x7fdbc0762f10>,
'Voting': <pycaret.containers.models.classification.VotingClassifierContainer at 0x7fdbc0f33190>,
'CalibratedCV': <pycaret.containers.models.classification.CalibratedClassifierCVContainer at 0x7fdbc0f334d0>},
Age SibSp Fare Name Ticket Sex Pclass Embarked \
0 -8.614253e-16 1.901268 0.134351 17441 49 1 0 2
1 -8.614253e-16 -0.539572 -0.533837 3063 49 1 2 2
2 -2.069149e+00 0.680848 1.070483 17798 14 1 2 2
3 -9.374220e-01 -0.539572 -0.555506 12742 0 1 2 2
4 -5.737175e-01 -0.539572 -1.023540 2335 49 1 2 2
... ... ... ... ... ... ... ... ...
99995 1.669127e+00 -0.539572 -0.434567 1590 21 0 1 0
99996 1.911597e+00 -0.539572 -0.698959 2992 49 1 1 2
99997 1.536915e-01 -0.539572 -0.802137 4219 49 1 2 2
99998 1.002335e+00 -0.539572 0.259408 3941 49 1 2 2
99999 1.244805e+00 -0.539572 -0.492531 7055 49 1 2 2
Cabin_A Cabin_B Cabin_C Cabin_D Cabin_E Cabin_F Cabin_G Cabin_T \
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ...
99995 0 0 0 1 0 0 0 0
99996 0 0 0 0 0 0 0 0
99997 0 0 0 0 0 0 0 0
99998 0 0 0 0 0 0 0 0
99999 0 0 0 0 0 0 0 0
Cabin_X Survived
0 0 1.0
1 1 0.0
2 1 0.0
3 1 0.0
4 1 1.0
... ... ...
99995 0 1.0
99996 1 0.0
99997 1 0.0
99998 1 0.0
99999 1 0.0
[100000 rows x 18 columns],
5,
[('Setup Config',
Description Value
0 session_id 1
1 Target Survived
2 Target Type Binary
3 Label Encoded 0.0: 0, 1.0: 1
4 Original Data (100000, 18)
5 Missing Values False
6 Numeric Features 14
7 Categorical Features 3
8 Ordinal Features True
9 High Cardinality Features False
10 High Cardinality Method None
11 Transformed Train Set (69999, 17)
12 Transformed Test Set (30001, 17)
13 Shuffle Train-Test True
14 Stratify Train-Test False
15 Fold Generator StratifiedKFold
16 Fold Number 5
17 CPU Jobs -1
18 Use GPU False
19 Log Experiment False
20 Experiment Name clf-default-name
21 USI 9220
22 Imputation Type simple
23 Iterative Imputation Iteration None
24 Numeric Imputer mean
25 Iterative Imputation Numeric Model None
26 Categorical Imputer constant
27 Iterative Imputation Categorical Model None
28 Unknown Categoricals Handling least_frequent
29 Normalize False
30 Normalize Method None
31 Transformation False
32 Transformation Method None
33 PCA False
34 PCA Method None
35 PCA Components None
36 Ignore Low Variance False
37 Combine Rare Levels False
38 Rare Level Threshold None
39 Numeric Binning False
40 Remove Outliers False
41 Outliers Threshold None
42 Remove Multicollinearity False
43 Multicollinearity Threshold None
44 Clustering False
45 Clustering Iteration None
46 Polynomial Features False
47 Polynomial Degree None
48 Trignometry Features False
49 Polynomial Threshold None
50 Group Features False
51 Feature Selection False
52 Features Selection Threshold None
53 Feature Interaction False
54 Feature Ratio False
55 Interaction Threshold None
56 Fix Imbalance False
57 Fix Imbalance Method SMOTE),
('X_training Set',
Age SibSp Fare Name Ticket Sex Pclass Embarked \
62017 -1.786066 -0.539572 -0.425227 23058.0 38.0 0.0 1.0 2.0
5005 0.274926 -0.539572 0.041264 9979.0 49.0 1.0 1.0 2.0
56849 -1.361744 -0.539572 0.215883 14486.0 49.0 0.0 1.0 2.0
42434 1.426657 -0.539572 1.209948 8350.0 21.0 0.0 0.0 0.0
54712 -1.725448 -0.539572 -0.906172 18642.0 0.0 0.0 2.0 2.0
... ... ... ... ... ... ... ... ...
50057 1.608510 -0.539572 1.938114 4224.0 49.0 1.0 0.0 2.0
98047 -0.149396 0.680848 -0.914255 21294.0 49.0 1.0 2.0 2.0
5192 -0.634335 -0.539572 -1.037225 24329.0 49.0 1.0 1.0 2.0
77708 0.820483 -0.539572 2.156857 5150.0 49.0 0.0 0.0 0.0
98539 0.396161 -0.539572 2.729733 25222.0 49.0 1.0 0.0 1.0
Cabin_A Cabin_B Cabin_C Cabin_D Cabin_E Cabin_F Cabin_G Cabin_T \
62017 0 0 0 0 0 0 0 0
5005 0 0 0 0 0 0 0 0
56849 0 0 0 0 0 0 0 0
42434 0 0 1 0 0 0 0 0
54712 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ...
50057 1 0 0 0 0 0 0 0
98047 0 0 0 0 0 0 0 0
5192 0 0 0 0 0 0 0 0
77708 0 1 0 0 0 0 0 0
98539 1 0 0 0 0 0 0 0
Cabin_X
62017 1
5005 1
56849 1
42434 0
54712 1
... ...
50057 0
98047 1
5192 1
77708 0
98539 0
[69999 rows x 17 columns]),
('y_training Set',
62017 0
5005 0
56849 1
42434 1
54712 0
..
50057 1
98047 0
5192 0
77708 0
98539 1
Name: Survived, Length: 69999, dtype: int64),
('X_test Set',
Age SibSp Fare Name Ticket Sex Pclass Embarked \
43660 1.244805 -0.539572 0.820679 25313.0 49.0 0.0 0.0 2.0
87278 -0.210013 -0.539572 -0.555506 3156.0 49.0 1.0 0.0 0.0
14317 0.941718 0.680848 1.561942 11588.0 49.0 1.0 0.0 2.0
81932 0.638631 -0.539572 0.050516 16175.0 21.0 1.0 0.0 0.0
95321 -0.694952 0.680848 0.063476 10196.0 49.0 1.0 0.0 2.0
... ... ... ... ... ... ... ... ...
42287 -1.179892 -0.539572 -0.463126 11629.0 49.0 1.0 2.0 2.0
4967 -0.452483 -0.539572 0.265297 3394.0 49.0 1.0 1.0 0.0
47725 1.244805 -0.539572 -0.364529 19040.0 49.0 1.0 1.0 2.0
42348 -0.694952 -0.539572 -1.197666 15816.0 49.0 1.0 2.0 2.0
80630 -0.452483 -0.539572 -0.900153 24505.0 49.0 1.0 2.0 2.0
Cabin_A Cabin_B Cabin_C Cabin_D Cabin_E Cabin_F Cabin_G Cabin_T \
43660 0 0 1 0 0 0 0 0
87278 0 0 1 0 0 0 0 0
14317 1 0 0 0 0 0 0 0
81932 1 0 0 0 0 0 0 0
95321 0 0 1 0 0 0 0 0
... ... ... ... ... ... ... ... ...
42287 0 0 0 0 0 0 0 0
4967 0 0 0 0 0 0 0 0
47725 0 0 0 0 0 0 0 0
42348 0 0 0 0 0 0 0 0
80630 0 0 0 0 0 0 0 0
Cabin_X
43660 0
87278 0
14317 0
81932 0
95321 0
... ...
42287 1
4967 1
47725 1
42348 1
80630 1
[30001 rows x 17 columns]),
('y_test Set',
43660 1
87278 0
14317 0
81932 1
95321 0
..
42287 0
4967 1
47725 0
42348 0
80630 0
Name: Survived, Length: 30001, dtype: int64),
('Transformation Pipeline',
Pipeline(memory=None,
steps=[('dtypes',
DataTypes_Auto_infer(categorical_features=[],
display_types=False, features_todrop=[],
id_columns=[],
ml_usecase='classification',
numerical_features=[], target='Survived',
time_features=[])),
('imputer',
Simple_Imputer(categorical_strategy='not_available',
fill_value_categorical=None,
fill_value_numerical=None,
numeric_st...
('scaling', 'passthrough'), ('P_transform', 'passthrough'),
('binn', 'passthrough'), ('rem_outliers', 'passthrough'),
('cluster_all', 'passthrough'),
('dummy', Dummify(target='Survived')),
('fix_perfect', Remove_100(target='Survived')),
('clean_names', Clean_Colum_Names()),
('feature_select', 'passthrough'), ('fix_multi', 'passthrough'),
('dfs', 'passthrough'), ('pca', 'passthrough')],
verbose=False))],
'lightgbm',
False,
Age SibSp Fare Name Ticket Sex Pclass Embarked \
43660 1.244805 -0.539572 0.820679 25313.0 49.0 0.0 0.0 2.0
87278 -0.210013 -0.539572 -0.555506 3156.0 49.0 1.0 0.0 0.0
14317 0.941718 0.680848 1.561942 11588.0 49.0 1.0 0.0 2.0
81932 0.638631 -0.539572 0.050516 16175.0 21.0 1.0 0.0 0.0
95321 -0.694952 0.680848 0.063476 10196.0 49.0 1.0 0.0 2.0
... ... ... ... ... ... ... ... ...
42287 -1.179892 -0.539572 -0.463126 11629.0 49.0 1.0 2.0 2.0
4967 -0.452483 -0.539572 0.265297 3394.0 49.0 1.0 1.0 0.0
47725 1.244805 -0.539572 -0.364529 19040.0 49.0 1.0 1.0 2.0
42348 -0.694952 -0.539572 -1.197666 15816.0 49.0 1.0 2.0 2.0
80630 -0.452483 -0.539572 -0.900153 24505.0 49.0 1.0 2.0 2.0
Cabin_A Cabin_B Cabin_C Cabin_D Cabin_E Cabin_F Cabin_G Cabin_T \
43660 0 0 1 0 0 0 0 0
87278 0 0 1 0 0 0 0 0
14317 1 0 0 0 0 0 0 0
81932 1 0 0 0 0 0 0 0
95321 0 0 1 0 0 0 0 0
... ... ... ... ... ... ... ... ...
42287 0 0 0 0 0 0 0 0
4967 0 0 0 0 0 0 0 0
47725 0 0 0 0 0 0 0 0
42348 0 0 0 0 0 0 0 0
80630 0 0 0 0 0 0 0 0
Cabin_X
43660 0
87278 0
14317 0
81932 0
95321 0
... ...
42287 1
4967 1
47725 1
42348 1
80630 1
[30001 rows x 17 columns],
62017 0
5005 0
56849 1
42434 1
54712 0
..
50057 1
98047 0
5192 0
77708 0
98539 1
Name: Survived, Length: 69999, dtype: int64,
{'parameter': 'Hyperparameters',
'auc': 'AUC',
'confusion_matrix': 'Confusion Matrix',
'threshold': 'Threshold',
'pr': 'Precision Recall',
'error': 'Prediction Error',
'class_report': 'Class Report',
'rfe': 'Feature Selection',
'learning': 'Learning Curve',
'manifold': 'Manifold Learning',
'calibration': 'Calibration Curve',
'vc': 'Validation Curve',
'dimension': 'Dimensions',
'feature': 'Feature Importance',
'feature_all': 'Feature Importance (All)',
'boundary': 'Decision Boundary',
'lift': 'Lift Chart',
'gain': 'Gain Chart',
'tree': 'Decision Tree'},
None,
<MLUsecase.CLASSIFICATION: 1>,
-1,
43660 1
87278 0
14317 0
81932 1
95321 0
..
42287 0
4967 1
47725 0
42348 0
80630 0
Name: Survived, Length: 30001, dtype: int64,
Age SibSp Fare Name Ticket Sex Pclass \
0 -8.614253e-16 1.901268 0.134351 17441.0 49.0 1.0 0.0
1 -8.614253e-16 -0.539572 -0.533837 3063.0 49.0 1.0 2.0
2 -2.069149e+00 0.680848 1.070483 17798.0 14.0 1.0 2.0
3 -9.374220e-01 -0.539572 -0.555506 12742.0 0.0 1.0 2.0
4 -5.737175e-01 -0.539572 -1.023540 2335.0 49.0 1.0 2.0
... ... ... ... ... ... ... ...
99995 1.669127e+00 -0.539572 -0.434567 1590.0 21.0 0.0 1.0
99996 1.911597e+00 -0.539572 -0.698959 2992.0 49.0 1.0 1.0
99997 1.536915e-01 -0.539572 -0.802137 4219.0 49.0 1.0 2.0
99998 1.002335e+00 -0.539572 0.259408 3941.0 49.0 1.0 2.0
99999 1.244805e+00 -0.539572 -0.492531 7055.0 49.0 1.0 2.0
Embarked Cabin_A Cabin_B Cabin_C Cabin_D Cabin_E Cabin_F \
0 2.0 0 0 1 0 0 0
1 2.0 0 0 0 0 0 0
2 2.0 0 0 0 0 0 0
3 2.0 0 0 0 0 0 0
4 2.0 0 0 0 0 0 0
... ... ... ... ... ... ... ...
99995 0.0 0 0 0 1 0 0
99996 2.0 0 0 0 0 0 0
99997 2.0 0 0 0 0 0 0
99998 2.0 0 0 0 0 0 0
99999 2.0 0 0 0 0 0 0
Cabin_G Cabin_T Cabin_X
0 0 0 0
1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
... ... ... ...
99995 0 0 0
99996 0 0 1
99997 0 0 1
99998 0 0 1
99999 0 0 1
[100000 rows x 17 columns],
5,
None,
False)
1 2 3 lightgbm=create_model('lightgbm' )
Accuracy AUC Recall Prec. F1 Kappa MCC
<tr>
<th id="T_222f1_level0_row0" class="row_heading level0 row0" >0</th>
<td id="T_222f1_row0_col0" class="data row0 col0" >0.7825</td>
<td id="T_222f1_row0_col1" class="data row0 col1" >0.8494</td>
<td id="T_222f1_row0_col2" class="data row0 col2" >0.7359</td>
<td id="T_222f1_row0_col3" class="data row0 col3" >0.7513</td>
<td id="T_222f1_row0_col4" class="data row0 col4" >0.7435</td>
<td id="T_222f1_row0_col5" class="data row0 col5" >0.5547</td>
<td id="T_222f1_row0_col6" class="data row0 col6" >0.5548</td>
</tr>
<tr>
<th id="T_222f1_level0_row1" class="row_heading level0 row1" >1</th>
<td id="T_222f1_row1_col0" class="data row1 col0" >0.7801</td>
<td id="T_222f1_row1_col1" class="data row1 col1" >0.8490</td>
<td id="T_222f1_row1_col2" class="data row1 col2" >0.7437</td>
<td id="T_222f1_row1_col3" class="data row1 col3" >0.7431</td>
<td id="T_222f1_row1_col4" class="data row1 col4" >0.7434</td>
<td id="T_222f1_row1_col5" class="data row1 col5" >0.5510</td>
<td id="T_222f1_row1_col6" class="data row1 col6" >0.5510</td>
</tr>
<tr>
<th id="T_222f1_level0_row2" class="row_heading level0 row2" >2</th>
<td id="T_222f1_row2_col0" class="data row2 col0" >0.7863</td>
<td id="T_222f1_row2_col1" class="data row2 col1" >0.8547</td>
<td id="T_222f1_row2_col2" class="data row2 col2" >0.7467</td>
<td id="T_222f1_row2_col3" class="data row2 col3" >0.7525</td>
<td id="T_222f1_row2_col4" class="data row2 col4" >0.7496</td>
<td id="T_222f1_row2_col5" class="data row2 col5" >0.5632</td>
<td id="T_222f1_row2_col6" class="data row2 col6" >0.5632</td>
</tr>
<tr>
<th id="T_222f1_level0_row3" class="row_heading level0 row3" >3</th>
<td id="T_222f1_row3_col0" class="data row3 col0" >0.7796</td>
<td id="T_222f1_row3_col1" class="data row3 col1" >0.8490</td>
<td id="T_222f1_row3_col2" class="data row3 col2" >0.7391</td>
<td id="T_222f1_row3_col3" class="data row3 col3" >0.7447</td>
<td id="T_222f1_row3_col4" class="data row3 col4" >0.7419</td>
<td id="T_222f1_row3_col5" class="data row3 col5" >0.5496</td>
<td id="T_222f1_row3_col6" class="data row3 col6" >0.5497</td>
</tr>
<tr>
<th id="T_222f1_level0_row4" class="row_heading level0 row4" >4</th>
<td id="T_222f1_row4_col0" class="data row4 col0" >0.7833</td>
<td id="T_222f1_row4_col1" class="data row4 col1" >0.8502</td>
<td id="T_222f1_row4_col2" class="data row4 col2" >0.7475</td>
<td id="T_222f1_row4_col3" class="data row4 col3" >0.7469</td>
<td id="T_222f1_row4_col4" class="data row4 col4" >0.7472</td>
<td id="T_222f1_row4_col5" class="data row4 col5" >0.5577</td>
<td id="T_222f1_row4_col6" class="data row4 col6" >0.5577</td>
</tr>
<tr>
<th id="T_222f1_level0_row5" class="row_heading level0 row5" >Mean</th>
<td id="T_222f1_row5_col0" class="data row5 col0" >0.7824</td>
<td id="T_222f1_row5_col1" class="data row5 col1" >0.8505</td>
<td id="T_222f1_row5_col2" class="data row5 col2" >0.7426</td>
<td id="T_222f1_row5_col3" class="data row5 col3" >0.7477</td>
<td id="T_222f1_row5_col4" class="data row5 col4" >0.7451</td>
<td id="T_222f1_row5_col5" class="data row5 col5" >0.5552</td>
<td id="T_222f1_row5_col6" class="data row5 col6" >0.5553</td>
</tr>
<tr>
<th id="T_222f1_level0_row6" class="row_heading level0 row6" >SD</th>
<td id="T_222f1_row6_col0" class="data row6 col0" >0.0024</td>
<td id="T_222f1_row6_col1" class="data row6 col1" >0.0022</td>
<td id="T_222f1_row6_col2" class="data row6 col2" >0.0045</td>
<td id="T_222f1_row6_col3" class="data row6 col3" >0.0037</td>
<td id="T_222f1_row6_col4" class="data row6 col4" >0.0029</td>
<td id="T_222f1_row6_col5" class="data row6 col5" >0.0049</td>
<td id="T_222f1_row6_col6" class="data row6 col6" >0.0049</td>
</tr>
</tbody></table>
1 2 3 lightgbm = tune_model(lightgbm , optimize='AUC' )
Accuracy AUC Recall Prec. F1 Kappa MCC
<tr>
<th id="T_9e81c_level0_row0" class="row_heading level0 row0" >0</th>
<td id="T_9e81c_row0_col0" class="data row0 col0" >0.7793</td>
<td id="T_9e81c_row0_col1" class="data row0 col1" >0.8496</td>
<td id="T_9e81c_row0_col2" class="data row0 col2" >0.7382</td>
<td id="T_9e81c_row0_col3" class="data row0 col3" >0.7444</td>
<td id="T_9e81c_row0_col4" class="data row0 col4" >0.7413</td>
<td id="T_9e81c_row0_col5" class="data row0 col5" >0.5488</td>
<td id="T_9e81c_row0_col6" class="data row0 col6" >0.5489</td>
</tr>
<tr>
<th id="T_9e81c_level0_row1" class="row_heading level0 row1" >1</th>
<td id="T_9e81c_row1_col0" class="data row1 col0" >0.7797</td>
<td id="T_9e81c_row1_col1" class="data row1 col1" >0.8492</td>
<td id="T_9e81c_row1_col2" class="data row1 col2" >0.7439</td>
<td id="T_9e81c_row1_col3" class="data row1 col3" >0.7424</td>
<td id="T_9e81c_row1_col4" class="data row1 col4" >0.7431</td>
<td id="T_9e81c_row1_col5" class="data row1 col5" >0.5503</td>
<td id="T_9e81c_row1_col6" class="data row1 col6" >0.5503</td>
</tr>
<tr>
<th id="T_9e81c_level0_row2" class="row_heading level0 row2" >2</th>
<td id="T_9e81c_row2_col0" class="data row2 col0" >0.7858</td>
<td id="T_9e81c_row2_col1" class="data row2 col1" >0.8547</td>
<td id="T_9e81c_row2_col2" class="data row2 col2" >0.7489</td>
<td id="T_9e81c_row2_col3" class="data row2 col3" >0.7505</td>
<td id="T_9e81c_row2_col4" class="data row2 col4" >0.7497</td>
<td id="T_9e81c_row2_col5" class="data row2 col5" >0.5625</td>
<td id="T_9e81c_row2_col6" class="data row2 col6" >0.5625</td>
</tr>
<tr>
<th id="T_9e81c_level0_row3" class="row_heading level0 row3" >3</th>
<td id="T_9e81c_row3_col0" class="data row3 col0" >0.7777</td>
<td id="T_9e81c_row3_col1" class="data row3 col1" >0.8493</td>
<td id="T_9e81c_row3_col2" class="data row3 col2" >0.7467</td>
<td id="T_9e81c_row3_col3" class="data row3 col3" >0.7376</td>
<td id="T_9e81c_row3_col4" class="data row3 col4" >0.7422</td>
<td id="T_9e81c_row3_col5" class="data row3 col5" >0.5468</td>
<td id="T_9e81c_row3_col6" class="data row3 col6" >0.5469</td>
</tr>
<tr>
<th id="T_9e81c_level0_row4" class="row_heading level0 row4" >4</th>
<td id="T_9e81c_row4_col0" class="data row4 col0" >0.7825</td>
<td id="T_9e81c_row4_col1" class="data row4 col1" >0.8508</td>
<td id="T_9e81c_row4_col2" class="data row4 col2" >0.7429</td>
<td id="T_9e81c_row4_col3" class="data row4 col3" >0.7477</td>
<td id="T_9e81c_row4_col4" class="data row4 col4" >0.7453</td>
<td id="T_9e81c_row4_col5" class="data row4 col5" >0.5555</td>
<td id="T_9e81c_row4_col6" class="data row4 col6" >0.5555</td>
</tr>
<tr>
<th id="T_9e81c_level0_row5" class="row_heading level0 row5" >Mean</th>
<td id="T_9e81c_row5_col0" class="data row5 col0" >0.7810</td>
<td id="T_9e81c_row5_col1" class="data row5 col1" >0.8507</td>
<td id="T_9e81c_row5_col2" class="data row5 col2" >0.7441</td>
<td id="T_9e81c_row5_col3" class="data row5 col3" >0.7445</td>
<td id="T_9e81c_row5_col4" class="data row5 col4" >0.7443</td>
<td id="T_9e81c_row5_col5" class="data row5 col5" >0.5528</td>
<td id="T_9e81c_row5_col6" class="data row5 col6" >0.5528</td>
</tr>
<tr>
<th id="T_9e81c_level0_row6" class="row_heading level0 row6" >SD</th>
<td id="T_9e81c_row6_col0" class="data row6 col0" >0.0028</td>
<td id="T_9e81c_row6_col1" class="data row6 col1" >0.0021</td>
<td id="T_9e81c_row6_col2" class="data row6 col2" >0.0036</td>
<td id="T_9e81c_row6_col3" class="data row6 col3" >0.0044</td>
<td id="T_9e81c_row6_col4" class="data row6 col4" >0.0030</td>
<td id="T_9e81c_row6_col5" class="data row6 col5" >0.0056</td>
<td id="T_9e81c_row6_col6" class="data row6 col6" >0.0056</td>
</tr>
</tbody></table>
LGBMClassifier(bagging_fraction=0.8, bagging_freq=5, boosting_type='gbdt',
class_weight=None, colsample_bytree=1.0, feature_fraction=0.9,
importance_type='split', learning_rate=0.103, max_depth=-1,
min_child_samples=30, min_child_weight=0.001, min_split_gain=0.4,
n_estimators=40, n_jobs=-1, num_leaves=30, objective=None,
random_state=1, reg_alpha=2, reg_lambda=0.2, silent=True,
subsample=1.0, subsample_for_bin=200000, subsample_freq=0)
1 2 3 catboost=create_model('catboost' )
Accuracy AUC Recall Prec. F1 Kappa MCC
<tr>
<th id="T_cd7ef_level0_row0" class="row_heading level0 row0" >0</th>
<td id="T_cd7ef_row0_col0" class="data row0 col0" >0.7786</td>
<td id="T_cd7ef_row0_col1" class="data row0 col1" >0.8480</td>
<td id="T_cd7ef_row0_col2" class="data row0 col2" >0.7287</td>
<td id="T_cd7ef_row0_col3" class="data row0 col3" >0.7479</td>
<td id="T_cd7ef_row0_col4" class="data row0 col4" >0.7382</td>
<td id="T_cd7ef_row0_col5" class="data row0 col5" >0.5464</td>
<td id="T_cd7ef_row0_col6" class="data row0 col6" >0.5465</td>
</tr>
<tr>
<th id="T_cd7ef_level0_row1" class="row_heading level0 row1" >1</th>
<td id="T_cd7ef_row1_col0" class="data row1 col0" >0.7774</td>
<td id="T_cd7ef_row1_col1" class="data row1 col1" >0.8474</td>
<td id="T_cd7ef_row1_col2" class="data row1 col2" >0.7394</td>
<td id="T_cd7ef_row1_col3" class="data row1 col3" >0.7405</td>
<td id="T_cd7ef_row1_col4" class="data row1 col4" >0.7399</td>
<td id="T_cd7ef_row1_col5" class="data row1 col5" >0.5453</td>
<td id="T_cd7ef_row1_col6" class="data row1 col6" >0.5453</td>
</tr>
<tr>
<th id="T_cd7ef_level0_row2" class="row_heading level0 row2" >2</th>
<td id="T_cd7ef_row2_col0" class="data row2 col0" >0.7826</td>
<td id="T_cd7ef_row2_col1" class="data row2 col1" >0.8532</td>
<td id="T_cd7ef_row2_col2" class="data row2 col2" >0.7417</td>
<td id="T_cd7ef_row2_col3" class="data row2 col3" >0.7486</td>
<td id="T_cd7ef_row2_col4" class="data row2 col4" >0.7452</td>
<td id="T_cd7ef_row2_col5" class="data row2 col5" >0.5557</td>
<td id="T_cd7ef_row2_col6" class="data row2 col6" >0.5557</td>
</tr>
<tr>
<th id="T_cd7ef_level0_row3" class="row_heading level0 row3" >3</th>
<td id="T_cd7ef_row3_col0" class="data row3 col0" >0.7761</td>
<td id="T_cd7ef_row3_col1" class="data row3 col1" >0.8477</td>
<td id="T_cd7ef_row3_col2" class="data row3 col2" >0.7354</td>
<td id="T_cd7ef_row3_col3" class="data row3 col3" >0.7403</td>
<td id="T_cd7ef_row3_col4" class="data row3 col4" >0.7379</td>
<td id="T_cd7ef_row3_col5" class="data row3 col5" >0.5425</td>
<td id="T_cd7ef_row3_col6" class="data row3 col6" >0.5425</td>
</tr>
<tr>
<th id="T_cd7ef_level0_row4" class="row_heading level0 row4" >4</th>
<td id="T_cd7ef_row4_col0" class="data row4 col0" >0.7835</td>
<td id="T_cd7ef_row4_col1" class="data row4 col1" >0.8499</td>
<td id="T_cd7ef_row4_col2" class="data row4 col2" >0.7410</td>
<td id="T_cd7ef_row4_col3" class="data row4 col3" >0.7504</td>
<td id="T_cd7ef_row4_col4" class="data row4 col4" >0.7457</td>
<td id="T_cd7ef_row4_col5" class="data row4 col5" >0.5572</td>
<td id="T_cd7ef_row4_col6" class="data row4 col6" >0.5572</td>
</tr>
<tr>
<th id="T_cd7ef_level0_row5" class="row_heading level0 row5" >Mean</th>
<td id="T_cd7ef_row5_col0" class="data row5 col0" >0.7796</td>
<td id="T_cd7ef_row5_col1" class="data row5 col1" >0.8492</td>
<td id="T_cd7ef_row5_col2" class="data row5 col2" >0.7373</td>
<td id="T_cd7ef_row5_col3" class="data row5 col3" >0.7456</td>
<td id="T_cd7ef_row5_col4" class="data row5 col4" >0.7414</td>
<td id="T_cd7ef_row5_col5" class="data row5 col5" >0.5494</td>
<td id="T_cd7ef_row5_col6" class="data row5 col6" >0.5495</td>
</tr>
<tr>
<th id="T_cd7ef_level0_row6" class="row_heading level0 row6" >SD</th>
<td id="T_cd7ef_row6_col0" class="data row6 col0" >0.0029</td>
<td id="T_cd7ef_row6_col1" class="data row6 col1" >0.0022</td>
<td id="T_cd7ef_row6_col2" class="data row6 col2" >0.0048</td>
<td id="T_cd7ef_row6_col3" class="data row6 col3" >0.0043</td>
<td id="T_cd7ef_row6_col4" class="data row6 col4" >0.0034</td>
<td id="T_cd7ef_row6_col5" class="data row6 col5" >0.0059</td>
<td id="T_cd7ef_row6_col6" class="data row6 col6" >0.0059</td>
</tr>
</tbody></table>
1 2 3 catboost = tune_model(catboost , optimize='AUC' )
Accuracy AUC Recall Prec. F1 Kappa MCC
<tr>
<th id="T_27911_level0_row0" class="row_heading level0 row0" >0</th>
<td id="T_27911_row0_col0" class="data row0 col0" >0.7815</td>
<td id="T_27911_row0_col1" class="data row0 col1" >0.8501</td>
<td id="T_27911_row0_col2" class="data row0 col2" >0.7455</td>
<td id="T_27911_row0_col3" class="data row0 col3" >0.7447</td>
<td id="T_27911_row0_col4" class="data row0 col4" >0.7451</td>
<td id="T_27911_row0_col5" class="data row0 col5" >0.5539</td>
<td id="T_27911_row0_col6" class="data row0 col6" >0.5539</td>
</tr>
<tr>
<th id="T_27911_level0_row1" class="row_heading level0 row1" >1</th>
<td id="T_27911_row1_col0" class="data row1 col0" >0.7802</td>
<td id="T_27911_row1_col1" class="data row1 col1" >0.8490</td>
<td id="T_27911_row1_col2" class="data row1 col2" >0.7485</td>
<td id="T_27911_row1_col3" class="data row1 col3" >0.7410</td>
<td id="T_27911_row1_col4" class="data row1 col4" >0.7448</td>
<td id="T_27911_row1_col5" class="data row1 col5" >0.5518</td>
<td id="T_27911_row1_col6" class="data row1 col6" >0.5518</td>
</tr>
<tr>
<th id="T_27911_level0_row2" class="row_heading level0 row2" >2</th>
<td id="T_27911_row2_col0" class="data row2 col0" >0.7861</td>
<td id="T_27911_row2_col1" class="data row2 col1" >0.8554</td>
<td id="T_27911_row2_col2" class="data row2 col2" >0.7539</td>
<td id="T_27911_row2_col3" class="data row2 col3" >0.7486</td>
<td id="T_27911_row2_col4" class="data row2 col4" >0.7512</td>
<td id="T_27911_row2_col5" class="data row2 col5" >0.5636</td>
<td id="T_27911_row2_col6" class="data row2 col6" >0.5636</td>
</tr>
<tr>
<th id="T_27911_level0_row3" class="row_heading level0 row3" >3</th>
<td id="T_27911_row3_col0" class="data row3 col0" >0.7786</td>
<td id="T_27911_row3_col1" class="data row3 col1" >0.8494</td>
<td id="T_27911_row3_col2" class="data row3 col2" >0.7462</td>
<td id="T_27911_row3_col3" class="data row3 col3" >0.7395</td>
<td id="T_27911_row3_col4" class="data row3 col4" >0.7428</td>
<td id="T_27911_row3_col5" class="data row3 col5" >0.5485</td>
<td id="T_27911_row3_col6" class="data row3 col6" >0.5486</td>
</tr>
<tr>
<th id="T_27911_level0_row4" class="row_heading level0 row4" >4</th>
<td id="T_27911_row4_col0" class="data row4 col0" >0.7830</td>
<td id="T_27911_row4_col1" class="data row4 col1" >0.8509</td>
<td id="T_27911_row4_col2" class="data row4 col2" >0.7482</td>
<td id="T_27911_row4_col3" class="data row4 col3" >0.7460</td>
<td id="T_27911_row4_col4" class="data row4 col4" >0.7471</td>
<td id="T_27911_row4_col5" class="data row4 col5" >0.5570</td>
<td id="T_27911_row4_col6" class="data row4 col6" >0.5570</td>
</tr>
<tr>
<th id="T_27911_level0_row5" class="row_heading level0 row5" >Mean</th>
<td id="T_27911_row5_col0" class="data row5 col0" >0.7819</td>
<td id="T_27911_row5_col1" class="data row5 col1" >0.8510</td>
<td id="T_27911_row5_col2" class="data row5 col2" >0.7485</td>
<td id="T_27911_row5_col3" class="data row5 col3" >0.7439</td>
<td id="T_27911_row5_col4" class="data row5 col4" >0.7462</td>
<td id="T_27911_row5_col5" class="data row5 col5" >0.5550</td>
<td id="T_27911_row5_col6" class="data row5 col6" >0.5550</td>
</tr>
<tr>
<th id="T_27911_level0_row6" class="row_heading level0 row6" >SD</th>
<td id="T_27911_row6_col0" class="data row6 col0" >0.0025</td>
<td id="T_27911_row6_col1" class="data row6 col1" >0.0023</td>
<td id="T_27911_row6_col2" class="data row6 col2" >0.0029</td>
<td id="T_27911_row6_col3" class="data row6 col3" >0.0033</td>
<td id="T_27911_row6_col4" class="data row6 col4" >0.0028</td>
<td id="T_27911_row6_col5" class="data row6 col5" >0.0051</td>
<td id="T_27911_row6_col6" class="data row6 col6" >0.0051</td>
</tr>
</tbody></table>
1 2 3 4 5 6 7 8 9 10 11 def create_submission (model, test, test_passenger_id, model_name ): y_pred_test = model.predict_proba(test)[:, 1 ] submission = pd.DataFrame( { 'PassengerId' : test_passenger_id, 'Survived' : (y_pred_test >= 0.5 ).astype(int ), } ) submission.to_csv(f"submission_{model_name} .csv" , index=False ) return y_pred_test
1 2 3 test = all_df.iloc[100000 :, :] X_test=test.drop(drop_list,axis=1 ) X_test.head()
Age
SibSp
Fare
Name
Ticket
Sex
Pclass
Embarked
Cabin_A
Cabin_B
Cabin_C
Cabin_D
Cabin_E
Cabin_F
Cabin_G
Cabin_T
Cabin_X
100000
-0.937422
-0.539572
0.949786
10830
49
1
2
2
0
0
0
0
0
0
0
0
1
100001
1.123570
-0.539572
-1.273379
17134
49
0
2
2
0
0
0
0
0
0
0
0
1
100002
-0.937422
-0.539572
0.481059
9978
49
0
0
0
0
1
0
0
0
0
0
0
0
100003
-0.573717
-0.539572
-0.563310
13303
49
1
1
2
0
0
0
0
0
0
0
0
1
100004
-1.058657
-0.539572
0.125497
4406
49
0
0
0
0
1
0
0
0
0
0
0
0
1 2 3 4 5 6 7 8 9 10 11 12 test_pred_lightgbm = create_submission( lightgbm, X_test, test_df["PassengerId" ], "lightgbm" ) test_pred_catboost = create_submission( catboost, X_test, test_df["PassengerId" ], "catboost" )
1 2 3 4 5 6 7 8 9 10 test_pred_merged = ( test_pred_lightgbm + test_pred_catboost ) test_pred_merged = np.round (test_pred_merged / 2 )
1 2 3 4 5 6 submission = pd.DataFrame( { 'PassengerId' : test_df["PassengerId" ], 'Survived' : test_pred_merged.astype(int ), } submission.to_csv(f"submission_merged.csv" , index=False )
File "<ipython-input-39-f1cf7d72db78>", line 6
submission.to_csv(f"submission_merged.csv", index=False)
^
SyntaxError: invalid syntax
You need to set install_url
to use ShareThis. Please set it in _config.yml
.
Comments You forgot to set the shortname
for Disqus. Please set it in _config.yml
.