Titanic data 결정 트리, 랜덤포레스트, XGBoost, lightBGM, CATBoost 비교
전처리
Requirement already satisfied: catboost in /usr/local/lib/python3.7/dist-packages (0.25.1)
Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-packages (from catboost) (4.4.1)
Requirement already satisfied: graphviz in /usr/local/lib/python3.7/dist-packages (from catboost) (0.10.1)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from catboost) (1.15.0)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from catboost) (3.2.2)
Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.7/dist-packages (from catboost) (1.1.5)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from catboost) (1.4.1)
Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.7/dist-packages (from catboost) (1.19.5)
Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.7/dist-packages (from plotly->catboost) (1.3.3)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (2.8.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (1.3.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (2.4.7)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (0.10.0)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.24.0->catboost) (2018.9)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 import osimport randomimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport xgboost as xgbimport lightgbm as lgbmimport catboost as cbfrom sklearn.model_selection import train_test_split, GridSearchCVfrom sklearn.metrics import accuracy_scorefrom sklearn.tree import DecisionTreeClassifierfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.preprocessing import LabelEncoderfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.svm import SVCfrom sklearn.ensemble import AdaBoostClassifierfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn import metrics from sklearn.model_selection import RandomizedSearchCV
1 2 3 4 5 6 7 8 def set_seed (seed_value ): random.seed(seed_value) np.random.seed(seed_value) os.environ["PYTHONHASHSEED" ] = str (seed_value) SEED = 42 set_seed(SEED)
1 2 3 4 train_df = pd.read_csv('/content/sample_data/titanic_train.csv' ) test_df = pd.read_csv('/content/sample_data/titanic_test.csv' ) print (f"Train shape: {train_df.shape} " )train_df.sample(3 )
Train shape: (891, 12)
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
709
710
1
3
Moubarek, Master. Halim Gonios ("William George")
male
NaN
1
1
2661
15.2458
NaN
C
439
440
0
2
Kvillner, Mr. Johan Henrik Johannesson
male
31.0
0
0
C.A. 18723
10.5000
NaN
S
840
841
0
3
Alhomaki, Mr. Ilmari Rudolf
male
20.0
0
0
SOTON/O2 3101287
7.9250
NaN
S
1 2 print (f"Test shape: {test_df.shape} " )test_df.sample(3 )
Test shape: (418, 11)
PassengerId
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
20
912
1
Rothschild, Mr. Martin
male
55.00
1
0
PC 17603
59.40
NaN
C
338
1230
2
Denbury, Mr. Herbert
male
25.00
0
0
C.A. 31029
31.50
NaN
S
250
1142
2
West, Miss. Barbara J
female
0.92
1
2
C.A. 34651
27.75
NaN
S
1 2 3 4 5 6 7 full_df = pd.concat( [ train_df.drop(["PassengerId" , "Survived" ], axis=1 ), test_df.drop(["PassengerId" ], axis=1 ), ] ) y_train = train_df["Survived" ].values
Pclass 0
Name 0
Sex 0
Age 263
SibSp 0
Parch 0
Ticket 0
Fare 1
Cabin 1014
Embarked 2
dtype: int64
1 full_df = full_df.drop(["Age" , "Cabin" ], axis=1 )
1 2 3 4 5 6 7 8 9 10 11 12 13 plt.figure(figsize=(10 , 5 )) plt.subplot(1 , 2 , 1 ) plt.hist(full_df["Fare" ], bins=20 ) plt.xticks(fontsize=14 ) plt.yticks(fontsize=14 ) plt.title("Fare distribution" , fontsize=16 ) plt.subplot(1 , 2 , 2 ) embarked_info = full_df["Embarked" ].value_counts() plt.bar(embarked_info.index, embarked_info.values) plt.xticks(fontsize=14 ) plt.yticks(fontsize=14 ) plt.title("Embarked distribution" , fontsize=16 );
1 2 full_df["Embarked" ].fillna("S" , inplace=True ) full_df["Fare" ].fillna(full_df["Fare" ].mean(), inplace=True )
1 2 3 4 5 full_df["Title" ] = full_df["Name" ].str .extract(" ([A-Za-z]+)\." ) full_df["Title" ] = full_df["Title" ].replace(["Ms" , "Mlle" ], "Miss" ) full_df["Title" ] = full_df["Title" ].replace(["Mme" , "Countess" , "Lady" , "Dona" ], "Mrs" ) full_df["Title" ] = full_df["Title" ].replace(["Dr" , "Major" , "Col" , "Sir" , "Rev" , "Jonkheer" , "Capt" , "Don" ], "Mr" ) full_df = full_df.drop(["Name" ], axis=1 )
1 2 3 full_df["Sex" ] = full_df["Sex" ].map ({"male" : 1 , "female" : 0 }).astype(int ) full_df["Embarked" ] = full_df["Embarked" ].map ({"S" : 1 , "C" : 2 , "Q" : 3 }).astype(int ) full_df['Title' ] = full_df['Title' ].map ({"Mr" : 0 , "Miss" : 1 , "Mrs" : 2 , "Master" : 3 }).astype(int )
1 2 3 4 full_df["TicketNumber" ] = full_df["Ticket" ].str .split() full_df["TicketNumber" ] = full_df["TicketNumber" ].str [-1 ] full_df["TicketNumber" ] = LabelEncoder().fit_transform(full_df["TicketNumber" ]) full_df = full_df.drop(["Ticket" ], axis=1 )
1 2 full_df["FamilySize" ] = full_df["SibSp" ] + full_df["Parch" ] + 1 full_df["IsAlone" ] = full_df["FamilySize" ].apply(lambda x: 1 if x == 1 else 0 )
Pclass
Sex
SibSp
Parch
Fare
Embarked
Title
TicketNumber
FamilySize
IsAlone
0
3
1
1
0
7.2500
1
0
209
2
0
1
1
0
1
0
71.2833
2
2
166
2
0
2
3
0
0
0
7.9250
1
1
466
1
1
3
1
0
1
0
53.1000
1
2
67
2
0
4
3
1
0
0
8.0500
1
0
832
1
1
1 2 3 4 5 6 X_train = full_df[:y_train.shape[0 ]] X_test = full_df[y_train.shape[0 ]:] print (f"Train X shape: {X_train.shape} " )print (f"Train y shape: {y_train.shape} " )print (f"Test X shape: {X_test.shape} " )
Train X shape: (891, 10)
Train y shape: (891,)
Test X shape: (418, 10)
1 2 3 4 5 6 7 8 one_hot_cols = ["Embarked" , "Title" ] for col in one_hot_cols: full_df = pd.concat( [full_df, pd.get_dummies(full_df[col], prefix=col)], axis=1 , join="inner" , ) full_df = full_df.drop(one_hot_cols, axis=1 )
1 2 scaler = StandardScaler() full_df.loc[:] = scaler.fit_transform(full_df)
Pclass Sex SibSp ... Title_1 Title_2 Title_3
0 0.841916 0.743497 0.481288 ... -0.502625 -0.425920 -0.221084
1 -1.546098 -1.344995 0.481288 ... -0.502625 2.347858 -0.221084
2 0.841916 -1.344995 -0.479087 ... 1.989556 -0.425920 -0.221084
3 -1.546098 -1.344995 0.481288 ... -0.502625 2.347858 -0.221084
4 0.841916 0.743497 -0.479087 ... -0.502625 -0.425920 -0.221084
.. ... ... ... ... ... ... ...
413 0.841916 0.743497 -0.479087 ... -0.502625 -0.425920 -0.221084
414 -1.546098 -1.344995 -0.479087 ... -0.502625 2.347858 -0.221084
415 0.841916 0.743497 -0.479087 ... -0.502625 -0.425920 -0.221084
416 0.841916 0.743497 -0.479087 ... -0.502625 -0.425920 -0.221084
417 0.841916 0.743497 0.481288 ... -0.502625 -0.425920 4.523164
[1309 rows x 15 columns]
1 2 3 4 5 6 X_train_norm = full_df[:y_train.shape[0 ]] X_test_norm = full_df[y_train.shape[0 ]:] print (f"Train norm X shape: {X_train_norm.shape} " )print (f"Train y shape: {y_train.shape} " )print (f"Test norm X shape: {X_test_norm.shape} " )
Train norm X shape: (891, 15)
Train y shape: (891,)
Test norm X shape: (418, 15)
1 categorical_columns = ['Sex' , 'Embarked' , 'Title' , 'TicketNumber' , 'IsAlone' ]
1 X1_train, X1_test, y1_train, y1_test = train_test_split(X_train, y_train, test_size=0.3 )
결정트리 생성 GridSearch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 %%time parameters = { "max_depth" : [3 , 5 , 7 , 9 , 11 , 13 ], } model_desicion_tree = DecisionTreeClassifier( random_state=SEED, class_weight='balanced' , ) model_desicion_tree = GridSearchCV( model_desicion_tree, parameters, cv=5 , scoring='accuracy' , ) model_desicion_tree.fit(X_train, y_train) print ('-----' )print (f'Best parameters {model_desicion_tree.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + \ f'{model_desicion_tree.best_score_:.3 f} ' ) cross_valid_scores['desicion_tree' ] = model_desicion_tree.best_score_ print ('-----' )
-----
Best parameters {'max_depth': 11}
Mean cross-validated accuracy score of the best_estimator: 0.817
-----
CPU times: user 191 ms, sys: 4.34 ms, total: 196 ms
Wall time: 205 ms
랜덤 서치 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 %%time params = { "max_depth" :[3 , 5 , 7 , 9 , 11 , 13 ], } model_desicion_tree_rs = DecisionTreeClassifier( random_state=SEED, class_weight='balanced' , ) model_desicion_tree_rs = RandomizedSearchCV(model_desicion_tree_rs,params,cv=5 ,n_iter=50 ,random_state=0 ,scoring="accuracy" ) model_desicion_tree_rs.fit(X_train, y_train) print ('-----' )print (f'Best parameters {model_desicion_tree_rs.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + \ f'{model_desicion_tree_rs.best_score_:.3 f} ' ) cross_valid_scores['desicion_tree' ] = model_desicion_tree_rs.best_score_ print ('-----' )
-----
Best parameters {'max_depth': 11}
Mean cross-validated accuracy score of the best_estimator: 0.817
-----
CPU times: user 166 ms, sys: 680 µs, total: 167 ms
Wall time: 168 ms
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:281: UserWarning: The total space of parameters 6 is smaller than n_iter=50. Running 6 iterations. For exhaustive searches, use GridSearchCV.
% (grid_size, self.n_iter, grid_size), UserWarning)
하이퍼파라미터 튜닝 전
1 2 3 4 5 6 %%time model_dtree1=DecisionTreeClassifier(max_depth=5 ) model_dtree1.fit(X_train, y_train) y_pred_dtree1=model_dtree1.predict(X1_test) print ("\n정확도: " , metrics.accuracy_score(y1_test, y_pred_dtree1))print ("-----" )
정확도: 0.8582089552238806
-----
CPU times: user 9.36 ms, sys: 46 µs, total: 9.41 ms
Wall time: 9.77 ms
하이퍼 파라미터 튜닝 후
1 2 3 4 5 6 %%time model_dtree2=DecisionTreeClassifier(max_depth=11 ) model_dtree2.fit(X_train, y_train) y_pred_dtree2=model_dtree2.predict(X1_test) print ("\n정확도: " , metrics.accuracy_score(y1_test, y_pred_dtree2))print ("-----" )
정확도: 0.9850746268656716
-----
CPU times: user 9.64 ms, sys: 91 µs, total: 9.73 ms
Wall time: 13.7 ms
랜덤 포레스트 그리드서치 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 %%time parameters = { "n_estimators" : [5 , 10 , 15 , 20 , 25 ], "max_depth" : [3 , 5 , 7 , 9 , 11 , 13 ], } model_random_forest = RandomForestClassifier( random_state=SEED, class_weight='balanced' , ) model_random_forest = GridSearchCV( model_random_forest, parameters, cv=5 , scoring='accuracy' , ) model_random_forest.fit(X_train, y_train) print ('-----' )print (f'Best parameters {model_random_forest.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + \ f'{model_random_forest.best_score_:.3 f} ' ) cross_valid_scores['random_forest' ] = model_random_forest.best_score_ print ('-----' )
-----
Best parameters {'max_depth': 11, 'n_estimators': 25}
Mean cross-validated accuracy score of the best_estimator: 0.844
-----
CPU times: user 4.93 s, sys: 30.4 ms, total: 4.96 s
Wall time: 4.98 s
랜덤 서치 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 %%time parameters = { "n_estimators" : [5 , 10 , 15 , 20 , 25 ], "max_depth" : [3 , 5 , 7 , 9 , 11 , 13 ], } model2_random_forest_rs = RandomForestClassifier( random_state=SEED, class_weight='balanced' , ) model2_random_forest_rs = RandomizedSearchCV(model2_random_forest_rs,parameters,cv=5 ,n_iter=50 ,random_state=0 ,scoring="accuracy" ) model2_random_forest_rs.fit(X_train, y_train) print ('-----' )print (f'Best parameters {model2_random_forest_rs.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + \ f'{model2_random_forest_rs.best_score_:.3 f} ' ) cross_valid_scores['random_forest' ] = model2_random_forest_rs.best_score_ print ('-----' )
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:281: UserWarning: The total space of parameters 30 is smaller than n_iter=50. Running 30 iterations. For exhaustive searches, use GridSearchCV.
% (grid_size, self.n_iter, grid_size), UserWarning)
-----
Best parameters {'n_estimators': 25, 'max_depth': 11}
Mean cross-validated accuracy score of the best_estimator: 0.844
-----
CPU times: user 4.88 s, sys: 35.5 ms, total: 4.92 s
Wall time: 4.92 s
###파라미터 튜닝을 하지않은 randomForest
1 2 3 4 5 6 7 8 %%time model_rf1=RandomForestClassifier(max_depth=5 ) model_rf1.fit(X_train,y_train) y_pred_rf1=model_rf1.predict(X1_test) print ('\n정확도 :' , metrics.accuracy_score(y1_test, y_pred_rf1))print ("-----" )
정확도 : 0.8544776119402985
-----
CPU times: user 187 ms, sys: 1.96 ms, total: 189 ms
Wall time: 190 ms
1 2 3 4 5 6 7 8 %%time model_rf2=RandomForestClassifier(n_estimators= 25 , max_depth= 11 ) model_rf2.fit(X_train,y_train) y_pred_rf2=model_rf2.predict(X1_test) print ('\n정확도 :' , metrics.accuracy_score(y1_test, y_pred_rf2))print ("-----" )
정확도 : 0.9589552238805971
-----
CPU times: user 62.9 ms, sys: 2.11 ms, total: 65 ms
Wall time: 65.6 ms
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=5, max_features='auto',
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)
XGBOOST gridSearch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 %%time parameters = { 'max_depth' : [3 , 5 , 7 , 9 ], 'n_estimators' : [5 , 10 , 15 , 20 , 25 , 50 , 100 ], 'learning_rate' : [0.01 , 0.05 , 0.1 ] } model_xgb = xgb.XGBClassifier( random_state=SEED, ) model_xgb = GridSearchCV( model_xgb, parameters, cv=5 , scoring='accuracy' , ) model_xgb.fit(X_train, y_train) print ('-----' )print (f'Best parameters {model_xgb.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + f'{model_xgb.best_score_:.3 f} ' ) cross_valid_scores['xgboost' ] = model_xgb.best_score_ print ('-----' )
-----
Best parameters {'learning_rate': 0.1, 'max_depth': 7, 'n_estimators': 100}
Mean cross-validated accuracy score of the best_estimator: 0.846
-----
CPU times: user 13.8 s, sys: 189 ms, total: 14 s
Wall time: 14.1 s
xgboost에서 하이퍼파라미터튜닝을 위해 GridSearch를 진행. time : 14.3 s Best parameters {‘n_estimators’: 100, ‘max_depth’: 7, ‘learning_rate’: 0.1}
랜덤 서치 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 %%time params = { 'max_depth' : [3 , 5 , 7 , 9 ], 'n_estimators' : [5 , 10 , 15 , 20 , 25 , 50 , 100 ], 'learning_rate' : [0.01 , 0.05 , 0.1 ] } model_xgb_random = xgb.XGBClassifier( random_state=SEED, ) model_xgb_random =RandomizedSearchCV(model_xgb_random ,params,cv=5 ,n_iter=50 ,random_state=0 ,scoring="accuracy" ) model_xgb_random .fit(X_train, y_train) print ('-----' )print (f'Best parameters {model_xgb_random .best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + f'{model_xgb_random .best_score_:.3 f} ' ) cross_valid_scores['xgboost' ] = model_xgb_random .best_score_ print ('-----' )
-----
Best parameters {'n_estimators': 100, 'max_depth': 7, 'learning_rate': 0.1}
Mean cross-validated accuracy score of the best_estimator: 0.846
-----
CPU times: user 9.31 s, sys: 113 ms, total: 9.42 s
Wall time: 9.41 s
xgboost에서 두 서치의 성능을 보기위해 똑같은 환경에서 RandomSearch를 진행. time : 9.46 s Best parameters {‘n_estimators’: 100, ‘max_depth’: 7, ‘learning_rate’: 0.1}
파라미터튜닝을 하지않은 xgboost 1 2 3 4 5 6 7 %%time model_1=xgb.XGBClassifier() model_1.fit(X_train,y_train) pred_y1=model_1.predict(X1_test) print ('\n정확도 :' , metrics.accuracy_score(y1_test, pred_y1))print ("-----" )
정확도 : 0.8843283582089553
-----
CPU times: user 63.7 ms, sys: 993 µs, total: 64.7 ms
Wall time: 63.4 ms
하이퍼 파라미터 적용 1 2 3 4 5 6 7 8 %%time model_2=xgb.XGBClassifier(learning_rate= 0.1 , max_depth= 7 , n_estimators=100 ) model_2.fit(X_train,y_train) pred_y2=model_2.predict(X1_test) print ('\n정확도 :' , metrics.accuracy_score(y1_test, pred_y2))print ("-----" )
정확도 : 0.9514925373134329
-----
CPU times: user 118 ms, sys: 2.04 ms, total: 120 ms
Wall time: 119 ms
그리드 서치보다 랜덤 서치의 속도가 더 빠른 것을 알 수있다. 또한 하이퍼 파라미터를 튜닝 한 후의 정확도가 훨씬 올라갔음을 알 수 있다.
lightBGM GridSearch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 %%time parameters = { 'n_estimators' : [5 , 10 , 15 , 20 , 25 , 50 , 100 ], 'learning_rate' : [0.01 , 0.05 , 0.1 ], 'num_leaves' : [7 , 15 , 31 ], } model_lgbm = lgbm.LGBMClassifier( random_state=SEED, class_weight='balanced' , ) model_lgbm = GridSearchCV( model_lgbm, parameters, cv=5 , scoring='accuracy' , ) model_lgbm.fit( X_train, y_train, categorical_feature=categorical_columns ) print ('-----' )print (f'Best parameters {model_lgbm.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + f'{model_lgbm.best_score_:.3 f} ' ) cross_valid_scores['lightgbm' ] = model_lgbm.best_score_ print ('-----' )
/usr/local/lib/python3.7/dist-packages/lightgbm/basic.py:1209: UserWarning: categorical_feature in Dataset is overridden.
New categorical_feature is ['Embarked', 'IsAlone', 'Sex', 'TicketNumber', 'Title']
'New categorical_feature is {}'.format(sorted(list(categorical_feature))))
-----
Best parameters {'learning_rate': 0.1, 'n_estimators': 25, 'num_leaves': 15}
Mean cross-validated accuracy score of the best_estimator: 0.827
-----
CPU times: user 5.83 s, sys: 346 ms, total: 6.18 s
Wall time: 6.2 s
랜덤 서치 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 %%time params = { 'n_estimators' : [5 , 10 , 15 , 20 , 25 , 50 , 100 ], 'learning_rate' : [0.01 , 0.05 , 0.1 ], 'num_leaves' : [7 , 15 , 31 ], } model_lgbm_random = lgbm.LGBMClassifier( random_state=SEED, ) model_lgbm_random =RandomizedSearchCV(model_lgbm_random ,params,cv=5 ,n_iter=50 ,random_state=0 ,scoring="accuracy" ) model_lgbm_random .fit(X_train, y_train) print ('-----' )print (f'Best parameters {model_lgbm_random .best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + f'{model_lgbm_random .best_score_:.3 f} ' ) cross_valid_scores['LightGBM' ] = model_lgbm_random .best_score_ print ('-----' )
-----
Best parameters {'num_leaves': 31, 'n_estimators': 100, 'learning_rate': 0.05}
Mean cross-validated accuracy score of the best_estimator: 0.846
-----
CPU times: user 4.66 s, sys: 210 ms, total: 4.87 s
Wall time: 4.87 s
파라미터튜닝을 하지않은 LightGBM 1 2 3 4 5 6 7 %%time model_1=lgbm.LGBMClassifier() model_1.fit(X_train,y_train) pred_y1=model_1.predict(X1_test) print ('\n정확도 :' , metrics.accuracy_score(y1_test, pred_y1))print ('-----' )
정확도 : 0.9514925373134329
-----
CPU times: user 69.5 ms, sys: 3.96 ms, total: 73.5 ms
Wall time: 76.1 ms
하이퍼 파라미터 적용 1 2 3 4 5 6 7 8 %%time model_2=lgbm.LGBMClassifier(num_leaves= 15 ,n_estimators=25 , learning_rate= 0.1 ) model_2.fit(X_train,y_train) pred_y2=model_2.predict(X1_test) print ('\n정확도 :' , metrics.accuracy_score(y1_test, pred_y2))print ('-----' )
정확도 : 0.8582089552238806
-----
CPU times: user 20.3 ms, sys: 1.01 ms, total: 21.4 ms
Wall time: 22.4 ms
하이퍼 파라미터 적용2 1 2 3 4 5 6 7 %%time model_2=lgbm.LGBMClassifier(num_leaves= 31 ,n_estimators=100 , learning_rate= 0.05 ) model_2.fit(X_train,y_train) pred_y2=model_2.predict(X1_test) print ('\n정확도 :' , metrics.accuracy_score(y1_test, pred_y2))
정확도 : 0.914179104477612
CPU times: user 66.4 ms, sys: 6.96 ms, total: 73.3 ms
Wall time: 74.2 ms
Catboost 그리드서치 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 %%time parameters = { 'iterations' : [5 , 10 , 15 , 20 , 25 , 50 , 100 ], 'learning_rate' : [0.01 , 0.05 , 0.1 ], 'depth' : [3 , 5 , 7 , 9 , 11 , 13 ], } model_catboost = cb.CatBoostClassifier( verbose=False , ) model_catboost = GridSearchCV( model_catboost, parameters, cv=5 , scoring='accuracy' , ) model_catboost.fit(X_train, y_train) print ('-----' )print (f'Best parameters {model_catboost.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + f'{model_catboost.best_score_:.3 f} ' ) cross_valid_scores['catboost' ] = model_catboost.best_score_ print ('-----' )
-----
Best parameters {'depth': 13, 'iterations': 100, 'learning_rate': 0.1}
Mean cross-validated accuracy score of the best_estimator: 0.838
-----
CPU times: user 3min 49s, sys: 6.43 s, total: 3min 55s
Wall time: 2min 27s
랜덤 서치 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 %%time model_catboost_rs = cb.CatBoostClassifier( verbose=False , ) model_catboost_rs=RandomizedSearchCV(model_catboost_rs ,params,cv=5 ,n_iter=50 ,random_state=0 ,scoring="accuracy" ) model_catboost_rs.fit(X_train,y_train) print ('-----' )print (f'Best parameters {model_catboost_rs.best_params_} ' )print ( f'Mean cross-validated accuracy score of the best_estimator: ' + f'{model_catboost_rs.best_score_:.3 f} ' ) cross_valid_scores['catboost' ] = model_catboost_rs.best_score_ print ('-----' )
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_validation.py:536: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
_catboost.CatBoostError: catboost/private/libs/options/catboost_options.cpp:893: max_leaves option works only with lossguide tree growing
FitFailedWarning)
-----
Best parameters {'num_leaves': 31, 'n_estimators': 100, 'learning_rate': 0.01}
Mean cross-validated accuracy score of the best_estimator: 0.832
-----
CPU times: user 6.45 s, sys: 702 ms, total: 7.15 s
Wall time: 7.18 s
하이퍼 파라미터 튜닝 전 1 from catboost import Pool, CatBoostClassifier, cv
1 2 3 4 5 %%time model_cb1=cb.CatBoostClassifier() model_cb1.fit(X_train, y_train) y_pred_cb1=model_cb1.predict(X1_test) print ("\n정확도: " , metrics.accuracy_score(y1_test, y_pred_cb1))
Learning rate set to 0.009807
0: learn: 0.6864423 total: 1.15ms remaining: 1.15s
1: learn: 0.6796678 total: 3.78ms remaining: 1.89s
2: learn: 0.6736018 total: 7.16ms remaining: 2.38s
3: learn: 0.6665873 total: 10.6ms remaining: 2.63s
4: learn: 0.6600996 total: 12.4ms remaining: 2.47s
5: learn: 0.6534897 total: 14.2ms remaining: 2.36s
6: learn: 0.6472195 total: 15.8ms remaining: 2.25s
7: learn: 0.6415114 total: 17.4ms remaining: 2.16s
8: learn: 0.6353287 total: 19ms remaining: 2.09s
9: learn: 0.6295821 total: 20.5ms remaining: 2.03s
10: learn: 0.6242876 total: 21.6ms remaining: 1.95s
11: learn: 0.6184887 total: 23.1ms remaining: 1.9s
12: learn: 0.6131840 total: 24.7ms remaining: 1.87s
13: learn: 0.6078112 total: 26.2ms remaining: 1.84s
14: learn: 0.6030343 total: 27.9ms remaining: 1.83s
15: learn: 0.5977374 total: 29.4ms remaining: 1.81s
16: learn: 0.5928195 total: 31ms remaining: 1.79s
17: learn: 0.5892999 total: 32.1ms remaining: 1.75s
18: learn: 0.5855036 total: 33.5ms remaining: 1.73s
19: learn: 0.5812113 total: 35.3ms remaining: 1.73s
20: learn: 0.5765712 total: 36.8ms remaining: 1.72s
21: learn: 0.5720403 total: 38.3ms remaining: 1.7s
22: learn: 0.5680552 total: 39.8ms remaining: 1.69s
23: learn: 0.5638984 total: 41.4ms remaining: 1.68s
24: learn: 0.5596681 total: 42.9ms remaining: 1.67s
25: learn: 0.5553698 total: 44.4ms remaining: 1.66s
26: learn: 0.5516134 total: 46ms remaining: 1.66s
27: learn: 0.5481987 total: 47.5ms remaining: 1.65s
28: learn: 0.5447553 total: 49.1ms remaining: 1.64s
29: learn: 0.5408223 total: 50.6ms remaining: 1.64s
30: learn: 0.5369519 total: 52.1ms remaining: 1.63s
31: learn: 0.5330715 total: 53.6ms remaining: 1.62s
32: learn: 0.5299491 total: 55.1ms remaining: 1.61s
33: learn: 0.5267190 total: 56.4ms remaining: 1.6s
34: learn: 0.5231781 total: 57.9ms remaining: 1.6s
35: learn: 0.5208511 total: 58.8ms remaining: 1.57s
36: learn: 0.5177569 total: 60.3ms remaining: 1.57s
37: learn: 0.5150180 total: 61.8ms remaining: 1.56s
38: learn: 0.5118389 total: 63.4ms remaining: 1.56s
39: learn: 0.5092100 total: 64.9ms remaining: 1.56s
40: learn: 0.5064001 total: 66.3ms remaining: 1.55s
41: learn: 0.5038346 total: 67.9ms remaining: 1.55s
42: learn: 0.5013958 total: 69.5ms remaining: 1.54s
43: learn: 0.4984976 total: 71ms remaining: 1.54s
44: learn: 0.4968538 total: 72.5ms remaining: 1.54s
45: learn: 0.4948834 total: 73.6ms remaining: 1.53s
46: learn: 0.4922797 total: 75ms remaining: 1.52s
47: learn: 0.4898559 total: 76.5ms remaining: 1.52s
48: learn: 0.4882097 total: 78.1ms remaining: 1.51s
49: learn: 0.4858639 total: 79.7ms remaining: 1.51s
50: learn: 0.4839866 total: 81.4ms remaining: 1.51s
51: learn: 0.4815496 total: 83ms remaining: 1.51s
52: learn: 0.4792559 total: 84.6ms remaining: 1.51s
53: learn: 0.4770495 total: 86.2ms remaining: 1.51s
54: learn: 0.4747478 total: 87.8ms remaining: 1.51s
55: learn: 0.4727874 total: 89.3ms remaining: 1.5s
56: learn: 0.4712635 total: 90.4ms remaining: 1.5s
57: learn: 0.4694542 total: 92ms remaining: 1.49s
58: learn: 0.4679098 total: 93.5ms remaining: 1.49s
59: learn: 0.4666425 total: 94.6ms remaining: 1.48s
60: learn: 0.4651955 total: 96.2ms remaining: 1.48s
61: learn: 0.4629838 total: 97.8ms remaining: 1.48s
62: learn: 0.4613419 total: 99.3ms remaining: 1.48s
63: learn: 0.4596180 total: 101ms remaining: 1.48s
64: learn: 0.4582795 total: 103ms remaining: 1.48s
65: learn: 0.4567869 total: 104ms remaining: 1.48s
66: learn: 0.4554270 total: 106ms remaining: 1.48s
67: learn: 0.4537690 total: 108ms remaining: 1.48s
68: learn: 0.4520165 total: 109ms remaining: 1.47s
69: learn: 0.4504949 total: 111ms remaining: 1.47s
70: learn: 0.4492505 total: 113ms remaining: 1.47s
71: learn: 0.4477988 total: 115ms remaining: 1.48s
72: learn: 0.4470907 total: 116ms remaining: 1.47s
73: learn: 0.4456455 total: 117ms remaining: 1.47s
74: learn: 0.4439957 total: 119ms remaining: 1.46s
75: learn: 0.4424007 total: 120ms remaining: 1.46s
76: learn: 0.4411398 total: 122ms remaining: 1.46s
77: learn: 0.4393015 total: 123ms remaining: 1.46s
78: learn: 0.4377323 total: 125ms remaining: 1.46s
79: learn: 0.4366939 total: 127ms remaining: 1.46s
80: learn: 0.4357767 total: 128ms remaining: 1.45s
81: learn: 0.4342050 total: 129ms remaining: 1.45s
82: learn: 0.4329284 total: 131ms remaining: 1.45s
83: learn: 0.4319752 total: 134ms remaining: 1.46s
84: learn: 0.4305898 total: 136ms remaining: 1.46s
85: learn: 0.4292832 total: 140ms remaining: 1.49s
86: learn: 0.4279310 total: 143ms remaining: 1.5s
87: learn: 0.4265082 total: 145ms remaining: 1.5s
88: learn: 0.4252939 total: 147ms remaining: 1.5s
89: learn: 0.4243060 total: 148ms remaining: 1.5s
90: learn: 0.4236286 total: 150ms remaining: 1.5s
91: learn: 0.4225358 total: 151ms remaining: 1.49s
92: learn: 0.4220645 total: 153ms remaining: 1.49s
93: learn: 0.4210174 total: 154ms remaining: 1.49s
94: learn: 0.4199543 total: 156ms remaining: 1.48s
95: learn: 0.4188798 total: 158ms remaining: 1.48s
96: learn: 0.4179159 total: 159ms remaining: 1.48s
97: learn: 0.4168335 total: 161ms remaining: 1.48s
98: learn: 0.4164371 total: 162ms remaining: 1.47s
99: learn: 0.4156060 total: 163ms remaining: 1.47s
100: learn: 0.4147372 total: 165ms remaining: 1.47s
101: learn: 0.4137972 total: 167ms remaining: 1.47s
102: learn: 0.4133928 total: 168ms remaining: 1.46s
103: learn: 0.4123880 total: 169ms remaining: 1.46s
104: learn: 0.4114707 total: 171ms remaining: 1.46s
105: learn: 0.4106357 total: 173ms remaining: 1.46s
106: learn: 0.4098909 total: 174ms remaining: 1.45s
107: learn: 0.4091430 total: 176ms remaining: 1.45s
108: learn: 0.4085852 total: 177ms remaining: 1.45s
109: learn: 0.4079336 total: 181ms remaining: 1.46s
110: learn: 0.4068446 total: 184ms remaining: 1.47s
111: learn: 0.4059413 total: 186ms remaining: 1.47s
112: learn: 0.4051074 total: 187ms remaining: 1.47s
113: learn: 0.4045525 total: 189ms remaining: 1.47s
114: learn: 0.4039265 total: 190ms remaining: 1.46s
115: learn: 0.4033559 total: 192ms remaining: 1.46s
116: learn: 0.4026959 total: 194ms remaining: 1.46s
117: learn: 0.4021791 total: 195ms remaining: 1.46s
118: learn: 0.4013881 total: 197ms remaining: 1.46s
119: learn: 0.4005294 total: 199ms remaining: 1.46s
120: learn: 0.4000457 total: 201ms remaining: 1.46s
121: learn: 0.3993558 total: 203ms remaining: 1.46s
122: learn: 0.3987516 total: 205ms remaining: 1.46s
123: learn: 0.3983254 total: 206ms remaining: 1.46s
124: learn: 0.3981335 total: 207ms remaining: 1.45s
125: learn: 0.3975284 total: 209ms remaining: 1.45s
126: learn: 0.3968148 total: 211ms remaining: 1.45s
127: learn: 0.3962797 total: 213ms remaining: 1.45s
128: learn: 0.3955650 total: 214ms remaining: 1.45s
129: learn: 0.3949156 total: 216ms remaining: 1.45s
130: learn: 0.3943753 total: 218ms remaining: 1.44s
131: learn: 0.3939230 total: 219ms remaining: 1.44s
132: learn: 0.3933117 total: 221ms remaining: 1.44s
133: learn: 0.3928159 total: 222ms remaining: 1.44s
134: learn: 0.3922164 total: 224ms remaining: 1.44s
135: learn: 0.3918342 total: 225ms remaining: 1.43s
136: learn: 0.3912796 total: 227ms remaining: 1.43s
137: learn: 0.3905823 total: 229ms remaining: 1.43s
138: learn: 0.3898593 total: 230ms remaining: 1.43s
139: learn: 0.3893237 total: 232ms remaining: 1.43s
140: learn: 0.3888304 total: 234ms remaining: 1.43s
141: learn: 0.3884924 total: 236ms remaining: 1.42s
142: learn: 0.3881707 total: 238ms remaining: 1.42s
143: learn: 0.3878014 total: 239ms remaining: 1.42s
144: learn: 0.3873020 total: 241ms remaining: 1.42s
145: learn: 0.3868475 total: 243ms remaining: 1.42s
146: learn: 0.3862259 total: 245ms remaining: 1.42s
147: learn: 0.3858858 total: 246ms remaining: 1.42s
148: learn: 0.3856409 total: 248ms remaining: 1.42s
149: learn: 0.3855390 total: 249ms remaining: 1.41s
150: learn: 0.3850505 total: 251ms remaining: 1.41s
151: learn: 0.3844543 total: 253ms remaining: 1.41s
152: learn: 0.3839649 total: 254ms remaining: 1.41s
153: learn: 0.3832490 total: 256ms remaining: 1.41s
154: learn: 0.3828330 total: 257ms remaining: 1.4s
155: learn: 0.3823213 total: 259ms remaining: 1.4s
156: learn: 0.3819428 total: 261ms remaining: 1.4s
157: learn: 0.3813389 total: 262ms remaining: 1.4s
158: learn: 0.3809790 total: 264ms remaining: 1.4s
159: learn: 0.3805731 total: 266ms remaining: 1.39s
160: learn: 0.3799352 total: 267ms remaining: 1.39s
161: learn: 0.3794951 total: 269ms remaining: 1.39s
162: learn: 0.3790710 total: 271ms remaining: 1.39s
163: learn: 0.3786079 total: 272ms remaining: 1.39s
164: learn: 0.3783021 total: 274ms remaining: 1.39s
165: learn: 0.3778044 total: 275ms remaining: 1.38s
166: learn: 0.3773915 total: 277ms remaining: 1.38s
167: learn: 0.3772473 total: 278ms remaining: 1.38s
168: learn: 0.3768942 total: 280ms remaining: 1.37s
169: learn: 0.3762634 total: 281ms remaining: 1.37s
170: learn: 0.3758273 total: 283ms remaining: 1.37s
171: learn: 0.3754783 total: 284ms remaining: 1.37s
172: learn: 0.3753974 total: 285ms remaining: 1.36s
173: learn: 0.3752110 total: 287ms remaining: 1.36s
174: learn: 0.3750740 total: 288ms remaining: 1.36s
175: learn: 0.3747491 total: 290ms remaining: 1.35s
176: learn: 0.3740551 total: 291ms remaining: 1.35s
177: learn: 0.3736829 total: 293ms remaining: 1.35s
178: learn: 0.3733106 total: 295ms remaining: 1.35s
179: learn: 0.3730030 total: 296ms remaining: 1.35s
180: learn: 0.3727365 total: 298ms remaining: 1.35s
181: learn: 0.3726708 total: 299ms remaining: 1.34s
182: learn: 0.3724766 total: 300ms remaining: 1.34s
183: learn: 0.3720786 total: 302ms remaining: 1.34s
184: learn: 0.3717549 total: 304ms remaining: 1.34s
185: learn: 0.3713830 total: 305ms remaining: 1.33s
186: learn: 0.3710702 total: 307ms remaining: 1.33s
187: learn: 0.3707764 total: 308ms remaining: 1.33s
188: learn: 0.3707388 total: 309ms remaining: 1.33s
189: learn: 0.3704293 total: 311ms remaining: 1.32s
190: learn: 0.3700587 total: 313ms remaining: 1.32s
191: learn: 0.3699942 total: 314ms remaining: 1.32s
192: learn: 0.3696027 total: 318ms remaining: 1.33s
193: learn: 0.3695621 total: 319ms remaining: 1.32s
194: learn: 0.3691724 total: 320ms remaining: 1.32s
195: learn: 0.3688717 total: 322ms remaining: 1.32s
196: learn: 0.3685092 total: 323ms remaining: 1.32s
197: learn: 0.3682595 total: 325ms remaining: 1.32s
198: learn: 0.3679573 total: 327ms remaining: 1.32s
199: learn: 0.3678256 total: 328ms remaining: 1.31s
200: learn: 0.3675041 total: 331ms remaining: 1.31s
201: learn: 0.3670877 total: 332ms remaining: 1.31s
202: learn: 0.3668744 total: 334ms remaining: 1.31s
203: learn: 0.3665374 total: 337ms remaining: 1.31s
204: learn: 0.3662455 total: 338ms remaining: 1.31s
205: learn: 0.3662061 total: 339ms remaining: 1.31s
206: learn: 0.3659549 total: 341ms remaining: 1.3s
207: learn: 0.3657520 total: 342ms remaining: 1.3s
208: learn: 0.3651990 total: 344ms remaining: 1.3s
209: learn: 0.3650540 total: 346ms remaining: 1.3s
210: learn: 0.3648195 total: 347ms remaining: 1.3s
211: learn: 0.3643852 total: 349ms remaining: 1.29s
212: learn: 0.3643304 total: 350ms remaining: 1.29s
213: learn: 0.3639860 total: 352ms remaining: 1.29s
214: learn: 0.3636619 total: 356ms remaining: 1.3s
215: learn: 0.3634521 total: 359ms remaining: 1.3s
216: learn: 0.3631182 total: 361ms remaining: 1.3s
217: learn: 0.3629000 total: 362ms remaining: 1.3s
218: learn: 0.3628546 total: 363ms remaining: 1.29s
219: learn: 0.3626871 total: 364ms remaining: 1.29s
220: learn: 0.3625245 total: 365ms remaining: 1.29s
221: learn: 0.3622324 total: 367ms remaining: 1.28s
222: learn: 0.3620531 total: 368ms remaining: 1.28s
223: learn: 0.3617895 total: 369ms remaining: 1.28s
224: learn: 0.3613159 total: 371ms remaining: 1.28s
225: learn: 0.3611309 total: 372ms remaining: 1.27s
226: learn: 0.3608805 total: 373ms remaining: 1.27s
227: learn: 0.3603855 total: 374ms remaining: 1.27s
228: learn: 0.3603646 total: 375ms remaining: 1.26s
229: learn: 0.3601897 total: 376ms remaining: 1.26s
230: learn: 0.3601518 total: 377ms remaining: 1.25s
231: learn: 0.3601231 total: 377ms remaining: 1.25s
232: learn: 0.3599573 total: 379ms remaining: 1.25s
233: learn: 0.3599279 total: 379ms remaining: 1.24s
234: learn: 0.3595377 total: 381ms remaining: 1.24s
235: learn: 0.3592815 total: 382ms remaining: 1.24s
236: learn: 0.3589589 total: 383ms remaining: 1.23s
237: learn: 0.3586604 total: 385ms remaining: 1.23s
238: learn: 0.3584376 total: 386ms remaining: 1.23s
239: learn: 0.3583077 total: 387ms remaining: 1.23s
240: learn: 0.3580581 total: 388ms remaining: 1.22s
241: learn: 0.3577347 total: 390ms remaining: 1.22s
242: learn: 0.3577167 total: 390ms remaining: 1.22s
243: learn: 0.3576102 total: 391ms remaining: 1.21s
244: learn: 0.3573276 total: 393ms remaining: 1.21s
245: learn: 0.3570597 total: 394ms remaining: 1.21s
246: learn: 0.3570164 total: 395ms remaining: 1.2s
247: learn: 0.3568129 total: 396ms remaining: 1.2s
248: learn: 0.3566178 total: 397ms remaining: 1.2s
249: learn: 0.3563533 total: 399ms remaining: 1.2s
250: learn: 0.3560881 total: 400ms remaining: 1.19s
251: learn: 0.3559918 total: 401ms remaining: 1.19s
252: learn: 0.3556106 total: 403ms remaining: 1.19s
253: learn: 0.3552943 total: 404ms remaining: 1.19s
254: learn: 0.3551120 total: 405ms remaining: 1.18s
255: learn: 0.3549299 total: 407ms remaining: 1.18s
256: learn: 0.3546934 total: 408ms remaining: 1.18s
257: learn: 0.3544919 total: 410ms remaining: 1.18s
258: learn: 0.3543437 total: 411ms remaining: 1.18s
259: learn: 0.3541476 total: 413ms remaining: 1.17s
260: learn: 0.3538909 total: 414ms remaining: 1.17s
261: learn: 0.3537310 total: 416ms remaining: 1.17s
262: learn: 0.3535340 total: 417ms remaining: 1.17s
263: learn: 0.3534128 total: 419ms remaining: 1.17s
264: learn: 0.3531355 total: 420ms remaining: 1.17s
265: learn: 0.3529686 total: 422ms remaining: 1.16s
266: learn: 0.3527602 total: 423ms remaining: 1.16s
267: learn: 0.3524416 total: 425ms remaining: 1.16s
268: learn: 0.3520992 total: 426ms remaining: 1.16s
269: learn: 0.3519173 total: 428ms remaining: 1.16s
270: learn: 0.3517764 total: 429ms remaining: 1.16s
271: learn: 0.3516484 total: 431ms remaining: 1.15s
272: learn: 0.3513071 total: 432ms remaining: 1.15s
273: learn: 0.3511635 total: 434ms remaining: 1.15s
274: learn: 0.3507677 total: 435ms remaining: 1.15s
275: learn: 0.3504876 total: 437ms remaining: 1.15s
276: learn: 0.3503400 total: 438ms remaining: 1.14s
277: learn: 0.3502119 total: 440ms remaining: 1.14s
278: learn: 0.3500942 total: 442ms remaining: 1.14s
279: learn: 0.3500215 total: 443ms remaining: 1.14s
280: learn: 0.3498679 total: 445ms remaining: 1.14s
281: learn: 0.3494740 total: 446ms remaining: 1.14s
282: learn: 0.3493393 total: 448ms remaining: 1.13s
283: learn: 0.3492231 total: 452ms remaining: 1.14s
284: learn: 0.3489882 total: 453ms remaining: 1.14s
285: learn: 0.3488344 total: 454ms remaining: 1.13s
286: learn: 0.3486306 total: 456ms remaining: 1.13s
287: learn: 0.3484715 total: 457ms remaining: 1.13s
288: learn: 0.3483100 total: 458ms remaining: 1.13s
289: learn: 0.3481646 total: 460ms remaining: 1.13s
290: learn: 0.3480016 total: 461ms remaining: 1.12s
291: learn: 0.3477597 total: 463ms remaining: 1.12s
292: learn: 0.3476850 total: 464ms remaining: 1.12s
293: learn: 0.3476563 total: 466ms remaining: 1.12s
294: learn: 0.3474599 total: 467ms remaining: 1.12s
295: learn: 0.3471187 total: 469ms remaining: 1.11s
296: learn: 0.3469055 total: 470ms remaining: 1.11s
297: learn: 0.3466185 total: 472ms remaining: 1.11s
298: learn: 0.3465162 total: 473ms remaining: 1.11s
299: learn: 0.3464710 total: 475ms remaining: 1.11s
300: learn: 0.3463116 total: 476ms remaining: 1.11s
301: learn: 0.3462097 total: 478ms remaining: 1.1s
302: learn: 0.3460624 total: 479ms remaining: 1.1s
303: learn: 0.3458503 total: 481ms remaining: 1.1s
304: learn: 0.3457330 total: 483ms remaining: 1.1s
305: learn: 0.3454716 total: 484ms remaining: 1.1s
306: learn: 0.3453798 total: 490ms remaining: 1.1s
307: learn: 0.3452549 total: 494ms remaining: 1.11s
308: learn: 0.3451684 total: 497ms remaining: 1.11s
309: learn: 0.3448519 total: 498ms remaining: 1.11s
310: learn: 0.3447327 total: 500ms remaining: 1.11s
311: learn: 0.3445245 total: 502ms remaining: 1.11s
312: learn: 0.3444054 total: 503ms remaining: 1.1s
313: learn: 0.3442425 total: 505ms remaining: 1.1s
314: learn: 0.3441252 total: 506ms remaining: 1.1s
315: learn: 0.3438394 total: 508ms remaining: 1.1s
316: learn: 0.3437785 total: 510ms remaining: 1.1s
317: learn: 0.3436580 total: 511ms remaining: 1.1s
318: learn: 0.3434121 total: 513ms remaining: 1.09s
319: learn: 0.3434015 total: 514ms remaining: 1.09s
320: learn: 0.3432309 total: 515ms remaining: 1.09s
321: learn: 0.3430105 total: 517ms remaining: 1.09s
322: learn: 0.3430040 total: 518ms remaining: 1.08s
323: learn: 0.3428893 total: 519ms remaining: 1.08s
324: learn: 0.3427908 total: 521ms remaining: 1.08s
325: learn: 0.3426938 total: 522ms remaining: 1.08s
326: learn: 0.3424298 total: 526ms remaining: 1.08s
327: learn: 0.3422154 total: 528ms remaining: 1.08s
328: learn: 0.3420228 total: 531ms remaining: 1.08s
329: learn: 0.3419105 total: 533ms remaining: 1.08s
330: learn: 0.3417604 total: 535ms remaining: 1.08s
331: learn: 0.3417005 total: 537ms remaining: 1.08s
332: learn: 0.3415153 total: 538ms remaining: 1.08s
333: learn: 0.3413515 total: 540ms remaining: 1.08s
334: learn: 0.3412281 total: 542ms remaining: 1.07s
335: learn: 0.3412011 total: 543ms remaining: 1.07s
336: learn: 0.3410229 total: 544ms remaining: 1.07s
337: learn: 0.3409003 total: 546ms remaining: 1.07s
338: learn: 0.3407465 total: 547ms remaining: 1.07s
339: learn: 0.3405374 total: 549ms remaining: 1.06s
340: learn: 0.3404344 total: 550ms remaining: 1.06s
341: learn: 0.3403684 total: 552ms remaining: 1.06s
342: learn: 0.3400907 total: 554ms remaining: 1.06s
343: learn: 0.3398546 total: 555ms remaining: 1.06s
344: learn: 0.3397414 total: 557ms remaining: 1.06s
345: learn: 0.3396128 total: 558ms remaining: 1.05s
346: learn: 0.3395383 total: 560ms remaining: 1.05s
347: learn: 0.3393384 total: 561ms remaining: 1.05s
348: learn: 0.3391067 total: 564ms remaining: 1.05s
349: learn: 0.3389667 total: 567ms remaining: 1.05s
350: learn: 0.3387429 total: 568ms remaining: 1.05s
351: learn: 0.3385726 total: 571ms remaining: 1.05s
352: learn: 0.3384251 total: 573ms remaining: 1.05s
353: learn: 0.3381414 total: 575ms remaining: 1.05s
354: learn: 0.3379741 total: 576ms remaining: 1.05s
355: learn: 0.3378329 total: 577ms remaining: 1.04s
356: learn: 0.3377206 total: 578ms remaining: 1.04s
357: learn: 0.3375257 total: 579ms remaining: 1.04s
358: learn: 0.3373769 total: 581ms remaining: 1.04s
359: learn: 0.3372383 total: 582ms remaining: 1.03s
360: learn: 0.3370866 total: 583ms remaining: 1.03s
361: learn: 0.3370745 total: 584ms remaining: 1.03s
362: learn: 0.3369338 total: 586ms remaining: 1.03s
363: learn: 0.3368527 total: 587ms remaining: 1.02s
364: learn: 0.3367434 total: 588ms remaining: 1.02s
365: learn: 0.3365576 total: 589ms remaining: 1.02s
366: learn: 0.3364554 total: 591ms remaining: 1.02s
367: learn: 0.3363495 total: 592ms remaining: 1.02s
368: learn: 0.3361014 total: 593ms remaining: 1.01s
369: learn: 0.3359145 total: 595ms remaining: 1.01s
370: learn: 0.3358289 total: 596ms remaining: 1.01s
371: learn: 0.3356082 total: 598ms remaining: 1.01s
372: learn: 0.3354244 total: 599ms remaining: 1.01s
373: learn: 0.3351816 total: 601ms remaining: 1s
374: learn: 0.3349759 total: 602ms remaining: 1s
375: learn: 0.3348936 total: 604ms remaining: 1s
376: learn: 0.3346268 total: 605ms remaining: 1s
377: learn: 0.3343676 total: 607ms remaining: 999ms
378: learn: 0.3341921 total: 609ms remaining: 998ms
379: learn: 0.3339870 total: 611ms remaining: 996ms
380: learn: 0.3337607 total: 612ms remaining: 995ms
381: learn: 0.3337276 total: 614ms remaining: 993ms
382: learn: 0.3335497 total: 615ms remaining: 991ms
383: learn: 0.3333378 total: 617ms remaining: 990ms
384: learn: 0.3331444 total: 619ms remaining: 989ms
385: learn: 0.3328706 total: 620ms remaining: 987ms
386: learn: 0.3327889 total: 622ms remaining: 985ms
387: learn: 0.3326313 total: 624ms remaining: 985ms
388: learn: 0.3324981 total: 626ms remaining: 983ms
389: learn: 0.3323998 total: 628ms remaining: 982ms
390: learn: 0.3323033 total: 629ms remaining: 980ms
391: learn: 0.3322477 total: 631ms remaining: 978ms
392: learn: 0.3319772 total: 632ms remaining: 977ms
393: learn: 0.3317993 total: 634ms remaining: 975ms
394: learn: 0.3316346 total: 636ms remaining: 973ms
395: learn: 0.3315460 total: 637ms remaining: 972ms
396: learn: 0.3314495 total: 639ms remaining: 970ms
397: learn: 0.3313958 total: 640ms remaining: 969ms
398: learn: 0.3313636 total: 642ms remaining: 966ms
399: learn: 0.3312036 total: 643ms remaining: 965ms
400: learn: 0.3310957 total: 645ms remaining: 964ms
401: learn: 0.3309663 total: 647ms remaining: 962ms
402: learn: 0.3309633 total: 648ms remaining: 959ms
403: learn: 0.3308602 total: 649ms remaining: 958ms
404: learn: 0.3307102 total: 651ms remaining: 957ms
405: learn: 0.3306083 total: 653ms remaining: 955ms
406: learn: 0.3303933 total: 655ms remaining: 954ms
407: learn: 0.3303254 total: 657ms remaining: 953ms
408: learn: 0.3301241 total: 658ms remaining: 951ms
409: learn: 0.3300132 total: 660ms remaining: 950ms
410: learn: 0.3298714 total: 662ms remaining: 949ms
411: learn: 0.3297545 total: 666ms remaining: 951ms
412: learn: 0.3296896 total: 670ms remaining: 953ms
413: learn: 0.3293730 total: 672ms remaining: 951ms
414: learn: 0.3291582 total: 673ms remaining: 949ms
415: learn: 0.3289779 total: 675ms remaining: 947ms
416: learn: 0.3288515 total: 676ms remaining: 945ms
417: learn: 0.3286225 total: 677ms remaining: 943ms
418: learn: 0.3284417 total: 679ms remaining: 941ms
419: learn: 0.3282645 total: 680ms remaining: 939ms
420: learn: 0.3282057 total: 682ms remaining: 937ms
421: learn: 0.3280742 total: 683ms remaining: 936ms
422: learn: 0.3279897 total: 684ms remaining: 933ms
423: learn: 0.3279414 total: 685ms remaining: 931ms
424: learn: 0.3278043 total: 687ms remaining: 929ms
425: learn: 0.3277831 total: 687ms remaining: 926ms
426: learn: 0.3276888 total: 689ms remaining: 924ms
427: learn: 0.3276084 total: 690ms remaining: 922ms
428: learn: 0.3274960 total: 692ms remaining: 921ms
429: learn: 0.3273183 total: 693ms remaining: 919ms
430: learn: 0.3271913 total: 694ms remaining: 917ms
431: learn: 0.3271639 total: 696ms remaining: 915ms
432: learn: 0.3269948 total: 698ms remaining: 913ms
433: learn: 0.3268786 total: 700ms remaining: 912ms
434: learn: 0.3267243 total: 702ms remaining: 911ms
435: learn: 0.3266135 total: 703ms remaining: 910ms
436: learn: 0.3264746 total: 705ms remaining: 908ms
437: learn: 0.3260983 total: 706ms remaining: 906ms
438: learn: 0.3260188 total: 708ms remaining: 904ms
439: learn: 0.3259822 total: 709ms remaining: 902ms
440: learn: 0.3257988 total: 710ms remaining: 901ms
441: learn: 0.3256852 total: 712ms remaining: 899ms
442: learn: 0.3255033 total: 713ms remaining: 897ms
443: learn: 0.3254455 total: 715ms remaining: 895ms
444: learn: 0.3253134 total: 716ms remaining: 893ms
445: learn: 0.3252633 total: 717ms remaining: 891ms
446: learn: 0.3251332 total: 719ms remaining: 889ms
447: learn: 0.3249648 total: 720ms remaining: 887ms
448: learn: 0.3248574 total: 722ms remaining: 886ms
449: learn: 0.3247845 total: 723ms remaining: 884ms
450: learn: 0.3245354 total: 724ms remaining: 882ms
451: learn: 0.3244206 total: 726ms remaining: 880ms
452: learn: 0.3243711 total: 727ms remaining: 878ms
453: learn: 0.3243288 total: 729ms remaining: 877ms
454: learn: 0.3242242 total: 730ms remaining: 875ms
455: learn: 0.3239490 total: 732ms remaining: 873ms
456: learn: 0.3238705 total: 733ms remaining: 871ms
457: learn: 0.3238606 total: 734ms remaining: 869ms
458: learn: 0.3236528 total: 735ms remaining: 867ms
459: learn: 0.3235039 total: 737ms remaining: 865ms
460: learn: 0.3234211 total: 738ms remaining: 863ms
461: learn: 0.3233266 total: 740ms remaining: 861ms
462: learn: 0.3231303 total: 741ms remaining: 859ms
463: learn: 0.3229646 total: 742ms remaining: 857ms
464: learn: 0.3227962 total: 744ms remaining: 855ms
465: learn: 0.3226196 total: 745ms remaining: 854ms
466: learn: 0.3223571 total: 746ms remaining: 852ms
467: learn: 0.3222110 total: 748ms remaining: 850ms
468: learn: 0.3220662 total: 749ms remaining: 848ms
469: learn: 0.3219840 total: 750ms remaining: 846ms
470: learn: 0.3219059 total: 752ms remaining: 844ms
471: learn: 0.3218827 total: 754ms remaining: 843ms
472: learn: 0.3217921 total: 755ms remaining: 841ms
473: learn: 0.3216864 total: 757ms remaining: 840ms
474: learn: 0.3216762 total: 758ms remaining: 837ms
475: learn: 0.3215663 total: 759ms remaining: 836ms
476: learn: 0.3214919 total: 760ms remaining: 834ms
477: learn: 0.3213385 total: 762ms remaining: 832ms
478: learn: 0.3212131 total: 764ms remaining: 830ms
479: learn: 0.3211449 total: 765ms remaining: 829ms
480: learn: 0.3210588 total: 767ms remaining: 827ms
481: learn: 0.3210299 total: 768ms remaining: 825ms
482: learn: 0.3207860 total: 770ms remaining: 824ms
483: learn: 0.3206680 total: 773ms remaining: 825ms
484: learn: 0.3204886 total: 776ms remaining: 823ms
485: learn: 0.3201907 total: 778ms remaining: 823ms
486: learn: 0.3201631 total: 780ms remaining: 821ms
487: learn: 0.3200827 total: 782ms remaining: 820ms
488: learn: 0.3199985 total: 784ms remaining: 819ms
489: learn: 0.3198093 total: 786ms remaining: 818ms
490: learn: 0.3197330 total: 787ms remaining: 816ms
491: learn: 0.3195681 total: 789ms remaining: 814ms
492: learn: 0.3194094 total: 790ms remaining: 813ms
493: learn: 0.3193594 total: 792ms remaining: 811ms
494: learn: 0.3192246 total: 793ms remaining: 809ms
495: learn: 0.3190883 total: 795ms remaining: 808ms
496: learn: 0.3190022 total: 796ms remaining: 806ms
497: learn: 0.3189700 total: 798ms remaining: 804ms
498: learn: 0.3187582 total: 799ms remaining: 803ms
499: learn: 0.3186219 total: 801ms remaining: 801ms
500: learn: 0.3185476 total: 803ms remaining: 799ms
501: learn: 0.3184275 total: 804ms remaining: 798ms
502: learn: 0.3183448 total: 806ms remaining: 796ms
503: learn: 0.3182237 total: 808ms remaining: 795ms
504: learn: 0.3179514 total: 809ms remaining: 793ms
505: learn: 0.3179136 total: 811ms remaining: 792ms
506: learn: 0.3176711 total: 813ms remaining: 790ms
507: learn: 0.3175794 total: 814ms remaining: 788ms
508: learn: 0.3174719 total: 816ms remaining: 787ms
509: learn: 0.3172911 total: 817ms remaining: 785ms
510: learn: 0.3172861 total: 818ms remaining: 783ms
511: learn: 0.3172683 total: 819ms remaining: 781ms
512: learn: 0.3172510 total: 820ms remaining: 779ms
513: learn: 0.3171707 total: 822ms remaining: 777ms
514: learn: 0.3170907 total: 824ms remaining: 776ms
515: learn: 0.3170215 total: 825ms remaining: 774ms
516: learn: 0.3169492 total: 827ms remaining: 772ms
517: learn: 0.3168907 total: 828ms remaining: 771ms
518: learn: 0.3166368 total: 830ms remaining: 769ms
519: learn: 0.3165108 total: 831ms remaining: 767ms
520: learn: 0.3164277 total: 834ms remaining: 767ms
521: learn: 0.3163670 total: 836ms remaining: 766ms
522: learn: 0.3162119 total: 838ms remaining: 764ms
523: learn: 0.3159909 total: 840ms remaining: 763ms
524: learn: 0.3158627 total: 843ms remaining: 763ms
525: learn: 0.3157602 total: 845ms remaining: 762ms
526: learn: 0.3157078 total: 847ms remaining: 760ms
527: learn: 0.3156260 total: 848ms remaining: 758ms
528: learn: 0.3154974 total: 850ms remaining: 756ms
529: learn: 0.3153165 total: 851ms remaining: 755ms
530: learn: 0.3151412 total: 853ms remaining: 753ms
531: learn: 0.3150721 total: 854ms remaining: 751ms
532: learn: 0.3149426 total: 856ms remaining: 750ms
533: learn: 0.3148334 total: 858ms remaining: 748ms
534: learn: 0.3146896 total: 859ms remaining: 747ms
535: learn: 0.3144815 total: 861ms remaining: 745ms
536: learn: 0.3143912 total: 862ms remaining: 744ms
537: learn: 0.3143369 total: 864ms remaining: 742ms
538: learn: 0.3142618 total: 868ms remaining: 743ms
539: learn: 0.3141539 total: 870ms remaining: 741ms
540: learn: 0.3140318 total: 872ms remaining: 740ms
541: learn: 0.3139340 total: 874ms remaining: 739ms
542: learn: 0.3138693 total: 883ms remaining: 743ms
543: learn: 0.3137137 total: 884ms remaining: 741ms
544: learn: 0.3136775 total: 888ms remaining: 741ms
545: learn: 0.3135136 total: 890ms remaining: 740ms
546: learn: 0.3132667 total: 892ms remaining: 738ms
547: learn: 0.3131847 total: 897ms remaining: 740ms
548: learn: 0.3131351 total: 899ms remaining: 738ms
549: learn: 0.3130413 total: 900ms remaining: 736ms
550: learn: 0.3129377 total: 901ms remaining: 735ms
551: learn: 0.3127922 total: 903ms remaining: 733ms
552: learn: 0.3126559 total: 904ms remaining: 731ms
553: learn: 0.3125413 total: 906ms remaining: 729ms
554: learn: 0.3123807 total: 907ms remaining: 727ms
555: learn: 0.3122795 total: 908ms remaining: 725ms
556: learn: 0.3121609 total: 910ms remaining: 724ms
557: learn: 0.3120492 total: 911ms remaining: 722ms
558: learn: 0.3120059 total: 912ms remaining: 720ms
559: learn: 0.3118993 total: 914ms remaining: 718ms
560: learn: 0.3117650 total: 915ms remaining: 716ms
561: learn: 0.3116605 total: 917ms remaining: 714ms
562: learn: 0.3114923 total: 918ms remaining: 713ms
563: learn: 0.3114171 total: 919ms remaining: 711ms
564: learn: 0.3112964 total: 921ms remaining: 709ms
565: learn: 0.3111950 total: 922ms remaining: 707ms
566: learn: 0.3111227 total: 924ms remaining: 705ms
567: learn: 0.3109404 total: 925ms remaining: 703ms
568: learn: 0.3109345 total: 926ms remaining: 701ms
569: learn: 0.3107864 total: 927ms remaining: 699ms
570: learn: 0.3107062 total: 928ms remaining: 697ms
571: learn: 0.3105907 total: 930ms remaining: 696ms
572: learn: 0.3104622 total: 932ms remaining: 694ms
573: learn: 0.3104295 total: 933ms remaining: 693ms
574: learn: 0.3102594 total: 935ms remaining: 691ms
575: learn: 0.3099801 total: 936ms remaining: 689ms
576: learn: 0.3098861 total: 938ms remaining: 688ms
577: learn: 0.3097799 total: 940ms remaining: 686ms
578: learn: 0.3096591 total: 941ms remaining: 684ms
579: learn: 0.3094861 total: 943ms remaining: 683ms
580: learn: 0.3094233 total: 945ms remaining: 681ms
581: learn: 0.3093261 total: 947ms remaining: 680ms
582: learn: 0.3092554 total: 948ms remaining: 678ms
583: learn: 0.3091984 total: 950ms remaining: 677ms
584: learn: 0.3090779 total: 951ms remaining: 675ms
585: learn: 0.3089114 total: 953ms remaining: 673ms
586: learn: 0.3087072 total: 955ms remaining: 672ms
587: learn: 0.3086577 total: 957ms remaining: 671ms
588: learn: 0.3085933 total: 959ms remaining: 669ms
589: learn: 0.3084591 total: 960ms remaining: 667ms
590: learn: 0.3082292 total: 962ms remaining: 666ms
591: learn: 0.3081197 total: 964ms remaining: 665ms
592: learn: 0.3078835 total: 966ms remaining: 663ms
593: learn: 0.3077445 total: 968ms remaining: 661ms
594: learn: 0.3076817 total: 969ms remaining: 660ms
595: learn: 0.3076539 total: 971ms remaining: 658ms
596: learn: 0.3075941 total: 973ms remaining: 657ms
597: learn: 0.3074667 total: 975ms remaining: 655ms
598: learn: 0.3074483 total: 976ms remaining: 653ms
599: learn: 0.3073675 total: 977ms remaining: 651ms
600: learn: 0.3072547 total: 979ms remaining: 650ms
601: learn: 0.3072363 total: 980ms remaining: 648ms
602: learn: 0.3070790 total: 982ms remaining: 646ms
603: learn: 0.3069212 total: 984ms remaining: 645ms
604: learn: 0.3067527 total: 993ms remaining: 648ms
605: learn: 0.3066531 total: 995ms remaining: 647ms
606: learn: 0.3065907 total: 997ms remaining: 645ms
607: learn: 0.3064529 total: 998ms remaining: 644ms
608: learn: 0.3063562 total: 999ms remaining: 642ms
609: learn: 0.3062009 total: 1s remaining: 640ms
610: learn: 0.3060596 total: 1s remaining: 638ms
611: learn: 0.3059804 total: 1s remaining: 636ms
612: learn: 0.3059462 total: 1s remaining: 635ms
613: learn: 0.3058976 total: 1.01s remaining: 633ms
614: learn: 0.3057840 total: 1.01s remaining: 632ms
615: learn: 0.3057076 total: 1.01s remaining: 630ms
616: learn: 0.3055833 total: 1.01s remaining: 628ms
617: learn: 0.3055278 total: 1.01s remaining: 627ms
618: learn: 0.3054147 total: 1.01s remaining: 625ms
619: learn: 0.3052816 total: 1.02s remaining: 624ms
620: learn: 0.3052263 total: 1.02s remaining: 623ms
621: learn: 0.3051848 total: 1.02s remaining: 621ms
622: learn: 0.3051363 total: 1.02s remaining: 619ms
623: learn: 0.3049397 total: 1.02s remaining: 618ms
624: learn: 0.3049107 total: 1.03s remaining: 616ms
625: learn: 0.3047204 total: 1.03s remaining: 615ms
626: learn: 0.3045337 total: 1.03s remaining: 613ms
627: learn: 0.3044718 total: 1.03s remaining: 611ms
628: learn: 0.3044015 total: 1.03s remaining: 610ms
629: learn: 0.3043145 total: 1.03s remaining: 608ms
630: learn: 0.3042671 total: 1.04s remaining: 606ms
631: learn: 0.3041630 total: 1.04s remaining: 605ms
632: learn: 0.3040370 total: 1.04s remaining: 603ms
633: learn: 0.3039320 total: 1.04s remaining: 601ms
634: learn: 0.3038157 total: 1.04s remaining: 599ms
635: learn: 0.3037399 total: 1.04s remaining: 598ms
636: learn: 0.3037030 total: 1.04s remaining: 596ms
637: learn: 0.3035112 total: 1.05s remaining: 595ms
638: learn: 0.3033812 total: 1.05s remaining: 594ms
639: learn: 0.3032892 total: 1.05s remaining: 593ms
640: learn: 0.3031651 total: 1.05s remaining: 591ms
641: learn: 0.3030900 total: 1.06s remaining: 590ms
642: learn: 0.3030082 total: 1.06s remaining: 588ms
643: learn: 0.3029507 total: 1.06s remaining: 586ms
644: learn: 0.3027877 total: 1.06s remaining: 585ms
645: learn: 0.3027289 total: 1.06s remaining: 583ms
646: learn: 0.3026159 total: 1.06s remaining: 581ms
647: learn: 0.3025691 total: 1.07s remaining: 580ms
648: learn: 0.3024699 total: 1.07s remaining: 578ms
649: learn: 0.3023822 total: 1.07s remaining: 576ms
650: learn: 0.3022204 total: 1.07s remaining: 574ms
651: learn: 0.3021950 total: 1.07s remaining: 573ms
652: learn: 0.3020537 total: 1.07s remaining: 571ms
653: learn: 0.3018853 total: 1.08s remaining: 569ms
654: learn: 0.3018510 total: 1.08s remaining: 568ms
655: learn: 0.3017033 total: 1.08s remaining: 566ms
656: learn: 0.3016264 total: 1.08s remaining: 564ms
657: learn: 0.3015334 total: 1.08s remaining: 563ms
658: learn: 0.3014958 total: 1.08s remaining: 561ms
659: learn: 0.3014106 total: 1.08s remaining: 559ms
660: learn: 0.3013390 total: 1.09s remaining: 557ms
661: learn: 0.3012686 total: 1.09s remaining: 556ms
662: learn: 0.3011331 total: 1.09s remaining: 554ms
663: learn: 0.3010920 total: 1.09s remaining: 552ms
664: learn: 0.3009207 total: 1.09s remaining: 552ms
665: learn: 0.3008078 total: 1.1s remaining: 550ms
666: learn: 0.3007882 total: 1.1s remaining: 549ms
667: learn: 0.3007260 total: 1.1s remaining: 548ms
668: learn: 0.3006588 total: 1.1s remaining: 546ms
669: learn: 0.3004912 total: 1.11s remaining: 545ms
670: learn: 0.3004723 total: 1.11s remaining: 543ms
671: learn: 0.3003003 total: 1.11s remaining: 542ms
672: learn: 0.3001678 total: 1.11s remaining: 540ms
673: learn: 0.3000326 total: 1.11s remaining: 538ms
674: learn: 0.2999521 total: 1.11s remaining: 537ms
675: learn: 0.2997049 total: 1.12s remaining: 535ms
676: learn: 0.2995324 total: 1.12s remaining: 533ms
677: learn: 0.2994917 total: 1.12s remaining: 531ms
678: learn: 0.2994258 total: 1.12s remaining: 530ms
679: learn: 0.2992969 total: 1.12s remaining: 528ms
680: learn: 0.2991673 total: 1.12s remaining: 527ms
681: learn: 0.2990420 total: 1.13s remaining: 525ms
682: learn: 0.2989613 total: 1.13s remaining: 523ms
683: learn: 0.2988837 total: 1.13s remaining: 521ms
684: learn: 0.2988569 total: 1.13s remaining: 520ms
685: learn: 0.2988010 total: 1.13s remaining: 518ms
686: learn: 0.2986281 total: 1.13s remaining: 516ms
687: learn: 0.2985230 total: 1.14s remaining: 515ms
688: learn: 0.2984262 total: 1.14s remaining: 513ms
689: learn: 0.2983868 total: 1.14s remaining: 511ms
690: learn: 0.2983422 total: 1.14s remaining: 510ms
691: learn: 0.2982868 total: 1.14s remaining: 508ms
692: learn: 0.2981226 total: 1.14s remaining: 507ms
693: learn: 0.2980691 total: 1.15s remaining: 505ms
694: learn: 0.2980002 total: 1.15s remaining: 504ms
695: learn: 0.2977908 total: 1.15s remaining: 502ms
696: learn: 0.2977052 total: 1.15s remaining: 500ms
697: learn: 0.2976894 total: 1.15s remaining: 498ms
698: learn: 0.2975668 total: 1.15s remaining: 497ms
699: learn: 0.2974088 total: 1.16s remaining: 495ms
700: learn: 0.2972473 total: 1.16s remaining: 493ms
701: learn: 0.2971332 total: 1.16s remaining: 492ms
702: learn: 0.2970478 total: 1.16s remaining: 490ms
703: learn: 0.2969479 total: 1.16s remaining: 488ms
704: learn: 0.2968603 total: 1.16s remaining: 486ms
705: learn: 0.2968035 total: 1.16s remaining: 485ms
706: learn: 0.2967609 total: 1.17s remaining: 483ms
707: learn: 0.2965663 total: 1.17s remaining: 481ms
708: learn: 0.2963934 total: 1.17s remaining: 479ms
709: learn: 0.2961962 total: 1.17s remaining: 478ms
710: learn: 0.2961123 total: 1.17s remaining: 476ms
711: learn: 0.2960399 total: 1.17s remaining: 474ms
712: learn: 0.2959317 total: 1.17s remaining: 473ms
713: learn: 0.2957971 total: 1.18s remaining: 471ms
714: learn: 0.2956215 total: 1.18s remaining: 469ms
715: learn: 0.2954575 total: 1.18s remaining: 468ms
716: learn: 0.2953437 total: 1.18s remaining: 466ms
717: learn: 0.2952515 total: 1.18s remaining: 465ms
718: learn: 0.2951054 total: 1.18s remaining: 463ms
719: learn: 0.2950176 total: 1.19s remaining: 461ms
720: learn: 0.2949562 total: 1.19s remaining: 460ms
721: learn: 0.2948627 total: 1.19s remaining: 458ms
722: learn: 0.2946604 total: 1.19s remaining: 456ms
723: learn: 0.2945315 total: 1.19s remaining: 455ms
724: learn: 0.2943817 total: 1.2s remaining: 453ms
725: learn: 0.2942896 total: 1.2s remaining: 452ms
726: learn: 0.2942133 total: 1.2s remaining: 452ms
727: learn: 0.2941519 total: 1.21s remaining: 451ms
728: learn: 0.2940815 total: 1.21s remaining: 450ms
729: learn: 0.2939787 total: 1.21s remaining: 449ms
730: learn: 0.2938856 total: 1.22s remaining: 447ms
731: learn: 0.2937554 total: 1.22s remaining: 446ms
732: learn: 0.2936156 total: 1.22s remaining: 444ms
733: learn: 0.2934647 total: 1.22s remaining: 442ms
734: learn: 0.2933211 total: 1.22s remaining: 441ms
735: learn: 0.2932438 total: 1.23s remaining: 440ms
736: learn: 0.2931398 total: 1.23s remaining: 439ms
737: learn: 0.2929100 total: 1.23s remaining: 437ms
738: learn: 0.2927724 total: 1.23s remaining: 436ms
739: learn: 0.2926515 total: 1.24s remaining: 434ms
740: learn: 0.2924777 total: 1.24s remaining: 432ms
741: learn: 0.2922992 total: 1.24s remaining: 430ms
742: learn: 0.2922210 total: 1.24s remaining: 429ms
743: learn: 0.2919906 total: 1.24s remaining: 427ms
744: learn: 0.2919204 total: 1.24s remaining: 425ms
745: learn: 0.2917676 total: 1.24s remaining: 424ms
746: learn: 0.2917028 total: 1.25s remaining: 422ms
747: learn: 0.2916301 total: 1.25s remaining: 420ms
748: learn: 0.2915584 total: 1.25s remaining: 418ms
749: learn: 0.2914372 total: 1.25s remaining: 416ms
750: learn: 0.2913890 total: 1.25s remaining: 415ms
751: learn: 0.2912267 total: 1.25s remaining: 413ms
752: learn: 0.2910140 total: 1.25s remaining: 411ms
753: learn: 0.2908936 total: 1.25s remaining: 409ms
754: learn: 0.2907613 total: 1.25s remaining: 407ms
755: learn: 0.2906129 total: 1.26s remaining: 406ms
756: learn: 0.2905391 total: 1.26s remaining: 404ms
757: learn: 0.2903551 total: 1.26s remaining: 402ms
758: learn: 0.2902709 total: 1.26s remaining: 400ms
759: learn: 0.2901705 total: 1.26s remaining: 398ms
760: learn: 0.2899778 total: 1.26s remaining: 397ms
761: learn: 0.2898210 total: 1.26s remaining: 395ms
762: learn: 0.2897040 total: 1.26s remaining: 393ms
763: learn: 0.2896362 total: 1.27s remaining: 391ms
764: learn: 0.2895478 total: 1.27s remaining: 390ms
765: learn: 0.2894245 total: 1.27s remaining: 388ms
766: learn: 0.2893510 total: 1.27s remaining: 386ms
767: learn: 0.2891791 total: 1.27s remaining: 384ms
768: learn: 0.2891680 total: 1.27s remaining: 383ms
769: learn: 0.2890059 total: 1.27s remaining: 381ms
770: learn: 0.2889026 total: 1.28s remaining: 379ms
771: learn: 0.2886843 total: 1.28s remaining: 377ms
772: learn: 0.2885872 total: 1.28s remaining: 376ms
773: learn: 0.2884660 total: 1.28s remaining: 374ms
774: learn: 0.2883364 total: 1.28s remaining: 372ms
775: learn: 0.2882417 total: 1.28s remaining: 371ms
776: learn: 0.2881458 total: 1.29s remaining: 369ms
777: learn: 0.2880760 total: 1.29s remaining: 367ms
778: learn: 0.2880472 total: 1.29s remaining: 366ms
779: learn: 0.2879450 total: 1.29s remaining: 364ms
780: learn: 0.2877392 total: 1.29s remaining: 362ms
781: learn: 0.2876009 total: 1.29s remaining: 361ms
782: learn: 0.2873887 total: 1.29s remaining: 359ms
783: learn: 0.2872053 total: 1.3s remaining: 358ms
784: learn: 0.2870761 total: 1.3s remaining: 356ms
785: learn: 0.2869364 total: 1.3s remaining: 355ms
786: learn: 0.2868042 total: 1.31s remaining: 354ms
787: learn: 0.2866404 total: 1.31s remaining: 352ms
788: learn: 0.2864998 total: 1.31s remaining: 351ms
789: learn: 0.2863503 total: 1.31s remaining: 349ms
790: learn: 0.2862753 total: 1.31s remaining: 347ms
791: learn: 0.2861606 total: 1.31s remaining: 346ms
792: learn: 0.2861053 total: 1.32s remaining: 344ms
793: learn: 0.2859749 total: 1.32s remaining: 342ms
794: learn: 0.2858847 total: 1.32s remaining: 340ms
795: learn: 0.2857806 total: 1.32s remaining: 339ms
796: learn: 0.2857007 total: 1.32s remaining: 337ms
797: learn: 0.2856353 total: 1.32s remaining: 335ms
798: learn: 0.2855295 total: 1.33s remaining: 334ms
799: learn: 0.2854726 total: 1.33s remaining: 332ms
800: learn: 0.2854507 total: 1.33s remaining: 330ms
801: learn: 0.2853060 total: 1.33s remaining: 329ms
802: learn: 0.2852216 total: 1.33s remaining: 327ms
803: learn: 0.2851484 total: 1.33s remaining: 325ms
804: learn: 0.2850786 total: 1.33s remaining: 324ms
805: learn: 0.2850163 total: 1.34s remaining: 322ms
806: learn: 0.2849433 total: 1.34s remaining: 320ms
807: learn: 0.2848859 total: 1.34s remaining: 319ms
808: learn: 0.2847031 total: 1.34s remaining: 317ms
809: learn: 0.2846279 total: 1.34s remaining: 315ms
810: learn: 0.2844524 total: 1.35s remaining: 314ms
811: learn: 0.2843816 total: 1.35s remaining: 312ms
812: learn: 0.2842996 total: 1.35s remaining: 310ms
813: learn: 0.2841085 total: 1.35s remaining: 309ms
814: learn: 0.2839898 total: 1.35s remaining: 307ms
815: learn: 0.2839256 total: 1.35s remaining: 305ms
816: learn: 0.2838326 total: 1.36s remaining: 304ms
817: learn: 0.2837922 total: 1.36s remaining: 302ms
818: learn: 0.2837661 total: 1.36s remaining: 300ms
819: learn: 0.2837009 total: 1.36s remaining: 299ms
820: learn: 0.2836201 total: 1.36s remaining: 297ms
821: learn: 0.2834531 total: 1.36s remaining: 295ms
822: learn: 0.2833575 total: 1.36s remaining: 294ms
823: learn: 0.2832791 total: 1.37s remaining: 292ms
824: learn: 0.2832314 total: 1.37s remaining: 290ms
825: learn: 0.2831767 total: 1.37s remaining: 289ms
826: learn: 0.2830808 total: 1.37s remaining: 287ms
827: learn: 0.2829269 total: 1.37s remaining: 286ms
828: learn: 0.2828895 total: 1.38s remaining: 284ms
829: learn: 0.2828296 total: 1.38s remaining: 282ms
830: learn: 0.2826825 total: 1.38s remaining: 281ms
831: learn: 0.2825853 total: 1.38s remaining: 279ms
832: learn: 0.2824905 total: 1.39s remaining: 278ms
833: learn: 0.2823213 total: 1.39s remaining: 276ms
834: learn: 0.2822432 total: 1.39s remaining: 274ms
835: learn: 0.2821129 total: 1.39s remaining: 273ms
836: learn: 0.2820086 total: 1.39s remaining: 271ms
837: learn: 0.2819346 total: 1.39s remaining: 269ms
838: learn: 0.2817989 total: 1.4s remaining: 268ms
839: learn: 0.2817084 total: 1.4s remaining: 266ms
840: learn: 0.2813877 total: 1.4s remaining: 265ms
841: learn: 0.2812499 total: 1.4s remaining: 263ms
842: learn: 0.2811951 total: 1.41s remaining: 262ms
843: learn: 0.2810829 total: 1.41s remaining: 260ms
844: learn: 0.2810392 total: 1.41s remaining: 259ms
845: learn: 0.2809627 total: 1.41s remaining: 257ms
846: learn: 0.2808334 total: 1.41s remaining: 255ms
847: learn: 0.2807824 total: 1.41s remaining: 253ms
848: learn: 0.2807220 total: 1.41s remaining: 252ms
849: learn: 0.2806410 total: 1.42s remaining: 251ms
850: learn: 0.2805382 total: 1.43s remaining: 250ms
851: learn: 0.2804362 total: 1.43s remaining: 249ms
852: learn: 0.2803172 total: 1.44s remaining: 248ms
853: learn: 0.2802016 total: 1.44s remaining: 247ms
854: learn: 0.2800346 total: 1.45s remaining: 245ms
855: learn: 0.2800234 total: 1.45s remaining: 244ms
856: learn: 0.2798293 total: 1.45s remaining: 242ms
857: learn: 0.2797126 total: 1.45s remaining: 240ms
858: learn: 0.2795744 total: 1.45s remaining: 238ms
859: learn: 0.2794426 total: 1.45s remaining: 237ms
860: learn: 0.2791854 total: 1.46s remaining: 235ms
861: learn: 0.2791077 total: 1.46s remaining: 233ms
862: learn: 0.2790048 total: 1.46s remaining: 232ms
863: learn: 0.2788733 total: 1.46s remaining: 230ms
864: learn: 0.2788182 total: 1.46s remaining: 228ms
865: learn: 0.2786590 total: 1.46s remaining: 227ms
866: learn: 0.2785414 total: 1.47s remaining: 225ms
867: learn: 0.2784293 total: 1.47s remaining: 223ms
868: learn: 0.2783252 total: 1.47s remaining: 221ms
869: learn: 0.2781887 total: 1.47s remaining: 220ms
870: learn: 0.2779748 total: 1.47s remaining: 218ms
871: learn: 0.2779000 total: 1.47s remaining: 216ms
872: learn: 0.2778225 total: 1.48s remaining: 215ms
873: learn: 0.2777576 total: 1.48s remaining: 213ms
874: learn: 0.2777006 total: 1.48s remaining: 211ms
875: learn: 0.2776684 total: 1.48s remaining: 210ms
876: learn: 0.2776048 total: 1.49s remaining: 208ms
877: learn: 0.2775366 total: 1.49s remaining: 207ms
878: learn: 0.2774703 total: 1.49s remaining: 205ms
879: learn: 0.2773172 total: 1.49s remaining: 203ms
880: learn: 0.2772617 total: 1.49s remaining: 202ms
881: learn: 0.2771427 total: 1.49s remaining: 200ms
882: learn: 0.2770267 total: 1.5s remaining: 198ms
883: learn: 0.2769163 total: 1.5s remaining: 196ms
884: learn: 0.2767768 total: 1.5s remaining: 195ms
885: learn: 0.2767300 total: 1.5s remaining: 193ms
886: learn: 0.2766843 total: 1.5s remaining: 191ms
887: learn: 0.2765526 total: 1.5s remaining: 190ms
888: learn: 0.2764557 total: 1.5s remaining: 188ms
889: learn: 0.2763369 total: 1.51s remaining: 186ms
890: learn: 0.2762687 total: 1.51s remaining: 184ms
891: learn: 0.2762030 total: 1.51s remaining: 183ms
892: learn: 0.2761240 total: 1.51s remaining: 181ms
893: learn: 0.2760416 total: 1.51s remaining: 179ms
894: learn: 0.2759239 total: 1.51s remaining: 178ms
895: learn: 0.2757411 total: 1.52s remaining: 176ms
896: learn: 0.2756781 total: 1.52s remaining: 174ms
897: learn: 0.2755656 total: 1.52s remaining: 173ms
898: learn: 0.2755017 total: 1.53s remaining: 172ms
899: learn: 0.2753771 total: 1.53s remaining: 170ms
900: learn: 0.2752091 total: 1.53s remaining: 168ms
901: learn: 0.2751239 total: 1.53s remaining: 167ms
902: learn: 0.2750431 total: 1.53s remaining: 165ms
903: learn: 0.2748063 total: 1.53s remaining: 163ms
904: learn: 0.2747393 total: 1.54s remaining: 161ms
905: learn: 0.2747020 total: 1.54s remaining: 160ms
906: learn: 0.2746334 total: 1.54s remaining: 158ms
907: learn: 0.2744415 total: 1.54s remaining: 156ms
908: learn: 0.2743686 total: 1.54s remaining: 155ms
909: learn: 0.2742677 total: 1.55s remaining: 153ms
910: learn: 0.2741824 total: 1.55s remaining: 151ms
911: learn: 0.2741178 total: 1.55s remaining: 150ms
912: learn: 0.2739814 total: 1.55s remaining: 148ms
913: learn: 0.2737799 total: 1.55s remaining: 146ms
914: learn: 0.2736915 total: 1.55s remaining: 144ms
915: learn: 0.2736188 total: 1.56s remaining: 143ms
916: learn: 0.2734803 total: 1.56s remaining: 142ms
917: learn: 0.2733654 total: 1.57s remaining: 140ms
918: learn: 0.2732999 total: 1.57s remaining: 138ms
919: learn: 0.2731856 total: 1.57s remaining: 136ms
920: learn: 0.2731466 total: 1.57s remaining: 135ms
921: learn: 0.2730750 total: 1.57s remaining: 133ms
922: learn: 0.2729086 total: 1.57s remaining: 131ms
923: learn: 0.2728371 total: 1.57s remaining: 130ms
924: learn: 0.2727040 total: 1.58s remaining: 128ms
925: learn: 0.2726765 total: 1.58s remaining: 126ms
926: learn: 0.2726018 total: 1.58s remaining: 124ms
927: learn: 0.2725268 total: 1.58s remaining: 123ms
928: learn: 0.2723675 total: 1.58s remaining: 121ms
929: learn: 0.2723010 total: 1.58s remaining: 119ms
930: learn: 0.2721701 total: 1.59s remaining: 118ms
931: learn: 0.2721272 total: 1.59s remaining: 116ms
932: learn: 0.2720654 total: 1.59s remaining: 115ms
933: learn: 0.2717534 total: 1.6s remaining: 113ms
934: learn: 0.2716384 total: 1.6s remaining: 111ms
935: learn: 0.2714989 total: 1.6s remaining: 109ms
936: learn: 0.2712303 total: 1.6s remaining: 108ms
937: learn: 0.2711671 total: 1.6s remaining: 106ms
938: learn: 0.2711033 total: 1.6s remaining: 104ms
939: learn: 0.2709477 total: 1.61s remaining: 103ms
940: learn: 0.2708769 total: 1.61s remaining: 101ms
941: learn: 0.2705752 total: 1.61s remaining: 99.2ms
942: learn: 0.2704340 total: 1.61s remaining: 97.5ms
943: learn: 0.2702520 total: 1.61s remaining: 95.8ms
944: learn: 0.2701982 total: 1.62s remaining: 94.1ms
945: learn: 0.2700223 total: 1.62s remaining: 92.3ms
946: learn: 0.2699653 total: 1.62s remaining: 90.6ms
947: learn: 0.2698782 total: 1.62s remaining: 88.9ms
948: learn: 0.2698224 total: 1.62s remaining: 87.2ms
949: learn: 0.2697586 total: 1.62s remaining: 85.5ms
950: learn: 0.2696519 total: 1.63s remaining: 83.8ms
951: learn: 0.2695586 total: 1.63s remaining: 82.1ms
952: learn: 0.2694578 total: 1.63s remaining: 80.3ms
953: learn: 0.2693905 total: 1.63s remaining: 78.6ms
954: learn: 0.2693518 total: 1.63s remaining: 76.9ms
955: learn: 0.2692253 total: 1.63s remaining: 75.2ms
956: learn: 0.2690230 total: 1.64s remaining: 73.5ms
957: learn: 0.2689603 total: 1.64s remaining: 71.8ms
958: learn: 0.2689104 total: 1.64s remaining: 70ms
959: learn: 0.2688855 total: 1.64s remaining: 68.3ms
960: learn: 0.2688177 total: 1.64s remaining: 66.6ms
961: learn: 0.2686715 total: 1.64s remaining: 64.9ms
962: learn: 0.2686072 total: 1.64s remaining: 63.2ms
963: learn: 0.2685623 total: 1.65s remaining: 61.5ms
964: learn: 0.2685164 total: 1.65s remaining: 59.7ms
965: learn: 0.2683830 total: 1.65s remaining: 58ms
966: learn: 0.2683233 total: 1.65s remaining: 56.3ms
967: learn: 0.2681680 total: 1.65s remaining: 54.6ms
968: learn: 0.2680945 total: 1.65s remaining: 52.9ms
969: learn: 0.2680299 total: 1.66s remaining: 51.2ms
970: learn: 0.2679874 total: 1.66s remaining: 49.5ms
971: learn: 0.2678332 total: 1.66s remaining: 47.8ms
972: learn: 0.2677245 total: 1.66s remaining: 46.1ms
973: learn: 0.2675624 total: 1.66s remaining: 44.4ms
974: learn: 0.2674923 total: 1.66s remaining: 42.6ms
975: learn: 0.2674601 total: 1.66s remaining: 40.9ms
976: learn: 0.2674036 total: 1.67s remaining: 39.2ms
977: learn: 0.2673396 total: 1.67s remaining: 37.5ms
978: learn: 0.2672855 total: 1.67s remaining: 35.8ms
979: learn: 0.2672348 total: 1.67s remaining: 34.1ms
980: learn: 0.2671636 total: 1.67s remaining: 32.4ms
981: learn: 0.2671071 total: 1.67s remaining: 30.7ms
982: learn: 0.2670526 total: 1.68s remaining: 29ms
983: learn: 0.2670075 total: 1.68s remaining: 27.3ms
984: learn: 0.2669261 total: 1.68s remaining: 25.6ms
985: learn: 0.2668792 total: 1.68s remaining: 23.9ms
986: learn: 0.2668012 total: 1.68s remaining: 22.2ms
987: learn: 0.2667278 total: 1.68s remaining: 20.4ms
988: learn: 0.2665946 total: 1.69s remaining: 18.7ms
989: learn: 0.2664965 total: 1.69s remaining: 17ms
990: learn: 0.2663784 total: 1.69s remaining: 15.3ms
991: learn: 0.2663341 total: 1.69s remaining: 13.6ms
992: learn: 0.2662716 total: 1.69s remaining: 11.9ms
993: learn: 0.2661899 total: 1.69s remaining: 10.2ms
994: learn: 0.2660623 total: 1.69s remaining: 8.51ms
995: learn: 0.2660156 total: 1.7s remaining: 6.81ms
996: learn: 0.2659742 total: 1.7s remaining: 5.11ms
997: learn: 0.2658469 total: 1.7s remaining: 3.4ms
998: learn: 0.2657372 total: 1.7s remaining: 1.7ms
999: learn: 0.2656287 total: 1.7s remaining: 0us
정확도: 0.9216417910447762
CPU times: user 2.54 s, sys: 282 ms, total: 2.82 s
Wall time: 2.04 s
하이퍼파라미터 튜닝 후 1 2 3 4 5 %%time model_cb2=cb.CatBoostClassifier(depth= 13 ,learning_rate= 0.1 ) model_cb2.fit(X_train, y_train) y_pred_cb2=model_cb2.predict(X1_test) print ("\n정확도: " , metrics.accuracy_score(y1_test, y_pred_cb2))
0: learn: 0.6291440 total: 1.36ms remaining: 1.36s
1: learn: 0.5748476 total: 6.07ms remaining: 3.03s
2: learn: 0.5279115 total: 65.1ms remaining: 21.6s
3: learn: 0.4926697 total: 67.6ms remaining: 16.8s
4: learn: 0.4642216 total: 83.3ms remaining: 16.6s
5: learn: 0.4382921 total: 144ms remaining: 23.9s
6: learn: 0.4215442 total: 159ms remaining: 22.6s
7: learn: 0.4041541 total: 179ms remaining: 22.2s
8: learn: 0.3930502 total: 181ms remaining: 20s
9: learn: 0.3799636 total: 241ms remaining: 23.9s
10: learn: 0.3699306 total: 257ms remaining: 23.1s
11: learn: 0.3651040 total: 259ms remaining: 21.3s
12: learn: 0.3566676 total: 316ms remaining: 24s
13: learn: 0.3551631 total: 317ms remaining: 22.3s
14: learn: 0.3513713 total: 319ms remaining: 21s
15: learn: 0.3442301 total: 389ms remaining: 23.9s
16: learn: 0.3419305 total: 394ms remaining: 22.8s
17: learn: 0.3397292 total: 396ms remaining: 21.6s
18: learn: 0.3385750 total: 397ms remaining: 20.5s
19: learn: 0.3357366 total: 400ms remaining: 19.6s
20: learn: 0.3336362 total: 402ms remaining: 18.7s
21: learn: 0.3320698 total: 403ms remaining: 17.9s
22: learn: 0.3246891 total: 484ms remaining: 20.6s
23: learn: 0.3184729 total: 561ms remaining: 22.8s
24: learn: 0.3148940 total: 567ms remaining: 22.1s
25: learn: 0.3147399 total: 568ms remaining: 21.3s
26: learn: 0.3102915 total: 612ms remaining: 22s
27: learn: 0.3079201 total: 622ms remaining: 21.6s
28: learn: 0.3016318 total: 707ms remaining: 23.7s
29: learn: 0.2984929 total: 794ms remaining: 25.7s
30: learn: 0.2959946 total: 882ms remaining: 27.6s
31: learn: 0.2956280 total: 884ms remaining: 26.7s
32: learn: 0.2925718 total: 927ms remaining: 27.2s
33: learn: 0.2875422 total: 1.01s remaining: 28.6s
34: learn: 0.2860851 total: 1.01s remaining: 27.9s
35: learn: 0.2829340 total: 1.03s remaining: 27.7s
36: learn: 0.2789452 total: 1.12s remaining: 29.1s
37: learn: 0.2783872 total: 1.12s remaining: 28.4s
38: learn: 0.2749716 total: 1.21s remaining: 29.7s
39: learn: 0.2719646 total: 1.28s remaining: 30.9s
40: learn: 0.2709034 total: 1.29s remaining: 30.2s
41: learn: 0.2673618 total: 1.38s remaining: 31.4s
42: learn: 0.2642811 total: 1.46s remaining: 32.4s
43: learn: 0.2637187 total: 1.46s remaining: 31.7s
44: learn: 0.2635482 total: 1.46s remaining: 31s
45: learn: 0.2630957 total: 1.46s remaining: 30.3s
46: learn: 0.2606977 total: 1.54s remaining: 31.2s
47: learn: 0.2588854 total: 1.62s remaining: 32.1s
48: learn: 0.2582335 total: 1.62s remaining: 31.4s
49: learn: 0.2562634 total: 1.64s remaining: 31.1s
50: learn: 0.2533263 total: 1.72s remaining: 32s
51: learn: 0.2517890 total: 1.74s remaining: 31.7s
52: learn: 0.2509030 total: 1.74s remaining: 31.2s
53: learn: 0.2476277 total: 1.83s remaining: 32.1s
54: learn: 0.2450707 total: 1.91s remaining: 32.9s
55: learn: 0.2450066 total: 1.91s remaining: 32.3s
56: learn: 0.2445548 total: 1.93s remaining: 31.9s
57: learn: 0.2425602 total: 2s remaining: 32.6s
58: learn: 0.2424471 total: 2s remaining: 32s
59: learn: 0.2394531 total: 2.09s remaining: 32.8s
60: learn: 0.2382583 total: 2.12s remaining: 32.6s
61: learn: 0.2374918 total: 2.12s remaining: 32s
62: learn: 0.2336260 total: 2.2s remaining: 32.8s
63: learn: 0.2329741 total: 2.24s remaining: 32.8s
64: learn: 0.2325789 total: 2.24s remaining: 32.3s
65: learn: 0.2299386 total: 2.32s remaining: 32.9s
66: learn: 0.2281529 total: 2.42s remaining: 33.6s
67: learn: 0.2257874 total: 2.46s remaining: 33.7s
68: learn: 0.2232054 total: 2.54s remaining: 34.3s
69: learn: 0.2222198 total: 2.55s remaining: 33.9s
70: learn: 0.2199046 total: 2.63s remaining: 34.4s
71: learn: 0.2177259 total: 2.71s remaining: 35s
72: learn: 0.2144199 total: 2.8s remaining: 35.6s
73: learn: 0.2127443 total: 2.89s remaining: 36.1s
74: learn: 0.2111802 total: 2.96s remaining: 36.6s
75: learn: 0.2091821 total: 3.04s remaining: 37s
76: learn: 0.2066723 total: 3.13s remaining: 37.5s
77: learn: 0.2058984 total: 3.15s remaining: 37.3s
78: learn: 0.2048881 total: 3.17s remaining: 37s
79: learn: 0.2031754 total: 3.26s remaining: 37.4s
80: learn: 0.2030224 total: 3.26s remaining: 37s
81: learn: 0.2014270 total: 3.34s remaining: 37.4s
82: learn: 0.1992327 total: 3.44s remaining: 38s
83: learn: 0.1974043 total: 3.52s remaining: 38.4s
84: learn: 0.1969113 total: 3.55s remaining: 38.2s
85: learn: 0.1952535 total: 3.63s remaining: 38.6s
86: learn: 0.1949188 total: 3.63s remaining: 38.1s
87: learn: 0.1941748 total: 3.71s remaining: 38.5s
88: learn: 0.1933274 total: 3.79s remaining: 38.8s
89: learn: 0.1920005 total: 3.88s remaining: 39.2s
90: learn: 0.1902233 total: 3.96s remaining: 39.5s
91: learn: 0.1886434 total: 4.04s remaining: 39.9s
92: learn: 0.1878609 total: 4.12s remaining: 40.2s
93: learn: 0.1873971 total: 4.14s remaining: 39.9s
94: learn: 0.1860442 total: 4.22s remaining: 40.2s
95: learn: 0.1841309 total: 4.3s remaining: 40.5s
96: learn: 0.1836029 total: 4.31s remaining: 40.1s
97: learn: 0.1830616 total: 4.39s remaining: 40.5s
98: learn: 0.1818786 total: 4.47s remaining: 40.7s
99: learn: 0.1812028 total: 4.52s remaining: 40.7s
100: learn: 0.1801801 total: 4.59s remaining: 40.9s
101: learn: 0.1789388 total: 4.68s remaining: 41.2s
102: learn: 0.1772152 total: 4.76s remaining: 41.4s
103: learn: 0.1766453 total: 4.84s remaining: 41.7s
104: learn: 0.1749187 total: 4.92s remaining: 41.9s
105: learn: 0.1742036 total: 5s remaining: 42.1s
106: learn: 0.1726317 total: 5.08s remaining: 42.4s
107: learn: 0.1708060 total: 5.17s remaining: 42.7s
108: learn: 0.1694547 total: 5.25s remaining: 42.9s
109: learn: 0.1689197 total: 5.33s remaining: 43.1s
110: learn: 0.1674540 total: 5.41s remaining: 43.3s
111: learn: 0.1665666 total: 5.49s remaining: 43.5s
112: learn: 0.1655337 total: 5.57s remaining: 43.7s
113: learn: 0.1640463 total: 5.65s remaining: 43.9s
114: learn: 0.1632857 total: 5.73s remaining: 44.1s
115: learn: 0.1624247 total: 5.81s remaining: 44.3s
116: learn: 0.1609198 total: 5.89s remaining: 44.5s
117: learn: 0.1599200 total: 5.97s remaining: 44.7s
118: learn: 0.1588361 total: 6.05s remaining: 44.8s
119: learn: 0.1579644 total: 6.06s remaining: 44.4s
120: learn: 0.1569607 total: 6.14s remaining: 44.6s
121: learn: 0.1560274 total: 6.22s remaining: 44.7s
122: learn: 0.1551732 total: 6.29s remaining: 44.9s
123: learn: 0.1544019 total: 6.38s remaining: 45s
124: learn: 0.1537151 total: 6.46s remaining: 45.3s
125: learn: 0.1511900 total: 6.53s remaining: 45.3s
126: learn: 0.1507331 total: 6.59s remaining: 45.3s
127: learn: 0.1499530 total: 6.65s remaining: 45.3s
128: learn: 0.1490988 total: 6.72s remaining: 45.4s
129: learn: 0.1484887 total: 6.78s remaining: 45.4s
130: learn: 0.1476770 total: 6.84s remaining: 45.4s
131: learn: 0.1465705 total: 6.9s remaining: 45.4s
132: learn: 0.1462378 total: 6.93s remaining: 45.2s
133: learn: 0.1457998 total: 6.99s remaining: 45.2s
134: learn: 0.1452223 total: 7s remaining: 44.8s
135: learn: 0.1439411 total: 7.05s remaining: 44.8s
136: learn: 0.1435812 total: 7.11s remaining: 44.8s
137: learn: 0.1428338 total: 7.18s remaining: 44.8s
138: learn: 0.1416907 total: 7.24s remaining: 44.8s
139: learn: 0.1414533 total: 7.24s remaining: 44.5s
140: learn: 0.1405029 total: 7.3s remaining: 44.5s
141: learn: 0.1398655 total: 7.36s remaining: 44.5s
142: learn: 0.1388855 total: 7.43s remaining: 44.5s
143: learn: 0.1382867 total: 7.49s remaining: 44.5s
144: learn: 0.1376590 total: 7.5s remaining: 44.3s
145: learn: 0.1368349 total: 7.58s remaining: 44.4s
146: learn: 0.1356921 total: 7.67s remaining: 44.5s
147: learn: 0.1354803 total: 7.67s remaining: 44.1s
148: learn: 0.1346190 total: 7.75s remaining: 44.3s
149: learn: 0.1341611 total: 7.83s remaining: 44.4s
150: learn: 0.1334851 total: 7.92s remaining: 44.5s
151: learn: 0.1329815 total: 8s remaining: 44.6s
152: learn: 0.1325443 total: 8.03s remaining: 44.5s
153: learn: 0.1314231 total: 8.12s remaining: 44.6s
154: learn: 0.1303450 total: 8.14s remaining: 44.4s
155: learn: 0.1300380 total: 8.22s remaining: 44.5s
156: learn: 0.1291482 total: 8.29s remaining: 44.5s
157: learn: 0.1285500 total: 8.38s remaining: 44.6s
158: learn: 0.1276863 total: 8.47s remaining: 44.8s
159: learn: 0.1267840 total: 8.54s remaining: 44.9s
160: learn: 0.1261672 total: 8.63s remaining: 45s
161: learn: 0.1258289 total: 8.65s remaining: 44.7s
162: learn: 0.1256662 total: 8.69s remaining: 44.6s
163: learn: 0.1251198 total: 8.77s remaining: 44.7s
164: learn: 0.1243440 total: 8.85s remaining: 44.8s
165: learn: 0.1238743 total: 8.93s remaining: 44.9s
166: learn: 0.1232649 total: 9.01s remaining: 45s
167: learn: 0.1223070 total: 9.09s remaining: 45s
168: learn: 0.1222166 total: 9.17s remaining: 45.1s
169: learn: 0.1214763 total: 9.25s remaining: 45.2s
170: learn: 0.1208712 total: 9.33s remaining: 45.2s
171: learn: 0.1203816 total: 9.35s remaining: 45s
172: learn: 0.1195046 total: 9.43s remaining: 45.1s
173: learn: 0.1191177 total: 9.52s remaining: 45.2s
174: learn: 0.1190539 total: 9.52s remaining: 44.9s
175: learn: 0.1186965 total: 9.6s remaining: 45s
176: learn: 0.1186388 total: 9.61s remaining: 44.7s
177: learn: 0.1180183 total: 9.69s remaining: 44.7s
178: learn: 0.1174797 total: 9.77s remaining: 44.8s
179: learn: 0.1170483 total: 9.87s remaining: 45s
180: learn: 0.1163883 total: 9.95s remaining: 45s
181: learn: 0.1161562 total: 9.99s remaining: 44.9s
182: learn: 0.1157569 total: 10s remaining: 44.7s
183: learn: 0.1157034 total: 10s remaining: 44.4s
184: learn: 0.1150241 total: 10.1s remaining: 44.5s
185: learn: 0.1143419 total: 10.2s remaining: 44.5s
186: learn: 0.1142538 total: 10.2s remaining: 44.3s
187: learn: 0.1138790 total: 10.3s remaining: 44.3s
188: learn: 0.1133401 total: 10.3s remaining: 44.4s
189: learn: 0.1132788 total: 10.3s remaining: 44.1s
190: learn: 0.1131678 total: 10.4s remaining: 43.8s
191: learn: 0.1125761 total: 10.4s remaining: 43.9s
192: learn: 0.1119667 total: 10.5s remaining: 43.8s
193: learn: 0.1116648 total: 10.6s remaining: 43.9s
194: learn: 0.1109593 total: 10.6s remaining: 43.9s
195: learn: 0.1102323 total: 10.7s remaining: 44s
196: learn: 0.1096026 total: 10.8s remaining: 44s
197: learn: 0.1095286 total: 10.8s remaining: 43.8s
198: learn: 0.1090764 total: 10.9s remaining: 43.8s
199: learn: 0.1085613 total: 11s remaining: 43.9s
200: learn: 0.1081235 total: 11s remaining: 43.9s
201: learn: 0.1075332 total: 11.1s remaining: 44s
202: learn: 0.1070773 total: 11.2s remaining: 44s
203: learn: 0.1066367 total: 11.3s remaining: 44.1s
204: learn: 0.1061256 total: 11.4s remaining: 44.1s
205: learn: 0.1057380 total: 11.5s remaining: 44.1s
206: learn: 0.1052409 total: 11.5s remaining: 44.2s
207: learn: 0.1049293 total: 11.6s remaining: 44.2s
208: learn: 0.1048501 total: 11.6s remaining: 44s
209: learn: 0.1046446 total: 11.7s remaining: 43.9s
210: learn: 0.1037971 total: 11.7s remaining: 43.9s
211: learn: 0.1035343 total: 11.8s remaining: 44s
212: learn: 0.1030647 total: 11.9s remaining: 44s
213: learn: 0.1027919 total: 12s remaining: 44.1s
214: learn: 0.1025205 total: 12.1s remaining: 44.1s
215: learn: 0.1022581 total: 12.2s remaining: 44.2s
216: learn: 0.1019889 total: 12.2s remaining: 44.2s
217: learn: 0.1017563 total: 12.3s remaining: 44.2s
218: learn: 0.1012053 total: 12.4s remaining: 44.2s
219: learn: 0.1008358 total: 12.5s remaining: 44.3s
220: learn: 0.1002939 total: 12.6s remaining: 44.3s
221: learn: 0.0998744 total: 12.7s remaining: 44.3s
222: learn: 0.0995125 total: 12.7s remaining: 44.4s
223: learn: 0.0994734 total: 12.8s remaining: 44.2s
224: learn: 0.0991801 total: 12.8s remaining: 44.2s
225: learn: 0.0989244 total: 12.9s remaining: 44.2s
226: learn: 0.0985547 total: 13s remaining: 44.3s
227: learn: 0.0981702 total: 13.1s remaining: 44.3s
228: learn: 0.0978596 total: 13.2s remaining: 44.3s
229: learn: 0.0975044 total: 13.2s remaining: 44.4s
230: learn: 0.0972430 total: 13.3s remaining: 44.4s
231: learn: 0.0972029 total: 13.3s remaining: 44.2s
232: learn: 0.0970625 total: 13.4s remaining: 44.2s
233: learn: 0.0969125 total: 13.5s remaining: 44.2s
234: learn: 0.0965909 total: 13.6s remaining: 44.2s
235: learn: 0.0961394 total: 13.7s remaining: 44.3s
236: learn: 0.0956679 total: 13.8s remaining: 44.3s
237: learn: 0.0954217 total: 13.8s remaining: 44.3s
238: learn: 0.0952190 total: 13.9s remaining: 44.3s
239: learn: 0.0946616 total: 14s remaining: 44.3s
240: learn: 0.0946270 total: 14s remaining: 44.1s
241: learn: 0.0944199 total: 14.1s remaining: 44.1s
242: learn: 0.0941707 total: 14.2s remaining: 44.2s
243: learn: 0.0939590 total: 14.3s remaining: 44.2s
244: learn: 0.0935693 total: 14.3s remaining: 44.2s
245: learn: 0.0932719 total: 14.4s remaining: 44.2s
246: learn: 0.0929236 total: 14.4s remaining: 44s
247: learn: 0.0925825 total: 14.5s remaining: 44s
248: learn: 0.0923408 total: 14.6s remaining: 44s
249: learn: 0.0921541 total: 14.7s remaining: 44s
250: learn: 0.0917607 total: 14.8s remaining: 44s
251: learn: 0.0916959 total: 14.8s remaining: 43.8s
252: learn: 0.0916654 total: 14.8s remaining: 43.6s
253: learn: 0.0914250 total: 14.9s remaining: 43.6s
254: learn: 0.0912275 total: 14.9s remaining: 43.6s
255: learn: 0.0909331 total: 15s remaining: 43.5s
256: learn: 0.0907212 total: 15s remaining: 43.5s
257: learn: 0.0903835 total: 15.1s remaining: 43.5s
258: learn: 0.0899619 total: 15.2s remaining: 43.5s
259: learn: 0.0895930 total: 15.3s remaining: 43.5s
260: learn: 0.0894562 total: 15.3s remaining: 43.3s
261: learn: 0.0891225 total: 15.4s remaining: 43.3s
262: learn: 0.0889105 total: 15.4s remaining: 43.1s
263: learn: 0.0887177 total: 15.5s remaining: 43.1s
264: learn: 0.0885528 total: 15.5s remaining: 43s
265: learn: 0.0884071 total: 15.5s remaining: 42.8s
266: learn: 0.0880970 total: 15.6s remaining: 42.7s
267: learn: 0.0878855 total: 15.6s remaining: 42.7s
268: learn: 0.0876066 total: 15.7s remaining: 42.7s
269: learn: 0.0874569 total: 15.8s remaining: 42.6s
270: learn: 0.0872114 total: 15.8s remaining: 42.6s
271: learn: 0.0868274 total: 15.9s remaining: 42.5s
272: learn: 0.0865278 total: 15.9s remaining: 42.5s
273: learn: 0.0862970 total: 16s remaining: 42.4s
274: learn: 0.0859278 total: 16.1s remaining: 42.3s
275: learn: 0.0857807 total: 16.1s remaining: 42.3s
276: learn: 0.0855715 total: 16.2s remaining: 42.3s
277: learn: 0.0853894 total: 16.2s remaining: 42.1s
278: learn: 0.0853644 total: 16.2s remaining: 41.9s
279: learn: 0.0851855 total: 16.3s remaining: 41.8s
280: learn: 0.0850113 total: 16.3s remaining: 41.8s
281: learn: 0.0848486 total: 16.4s remaining: 41.7s
282: learn: 0.0844737 total: 16.5s remaining: 41.7s
283: learn: 0.0841315 total: 16.5s remaining: 41.6s
284: learn: 0.0839427 total: 16.6s remaining: 41.6s
285: learn: 0.0837591 total: 16.6s remaining: 41.5s
286: learn: 0.0835672 total: 16.7s remaining: 41.5s
287: learn: 0.0834055 total: 16.8s remaining: 41.5s
288: learn: 0.0832002 total: 16.9s remaining: 41.5s
289: learn: 0.0829168 total: 17s remaining: 41.5s
290: learn: 0.0826480 total: 17s remaining: 41.5s
291: learn: 0.0823963 total: 17.1s remaining: 41.5s
292: learn: 0.0821079 total: 17.2s remaining: 41.5s
293: learn: 0.0817978 total: 17.3s remaining: 41.5s
294: learn: 0.0816177 total: 17.3s remaining: 41.5s
295: learn: 0.0813600 total: 17.4s remaining: 41.4s
296: learn: 0.0812284 total: 17.5s remaining: 41.4s
297: learn: 0.0810590 total: 17.6s remaining: 41.4s
298: learn: 0.0807188 total: 17.7s remaining: 41.4s
299: learn: 0.0805831 total: 17.8s remaining: 41.4s
300: learn: 0.0802811 total: 17.8s remaining: 41.4s
301: learn: 0.0801180 total: 17.9s remaining: 41.4s
302: learn: 0.0800344 total: 18s remaining: 41.4s
303: learn: 0.0799437 total: 18.1s remaining: 41.4s
304: learn: 0.0795872 total: 18.2s remaining: 41.4s
305: learn: 0.0793887 total: 18.2s remaining: 41.4s
306: learn: 0.0792553 total: 18.3s remaining: 41.3s
307: learn: 0.0790550 total: 18.4s remaining: 41.3s
308: learn: 0.0788949 total: 18.5s remaining: 41.3s
309: learn: 0.0787694 total: 18.6s remaining: 41.3s
310: learn: 0.0786095 total: 18.6s remaining: 41.3s
311: learn: 0.0783436 total: 18.7s remaining: 41.3s
312: learn: 0.0781246 total: 18.8s remaining: 41.3s
313: learn: 0.0780335 total: 18.9s remaining: 41.3s
314: learn: 0.0778421 total: 19s remaining: 41.3s
315: learn: 0.0776884 total: 19.1s remaining: 41.3s
316: learn: 0.0774921 total: 19.1s remaining: 41.2s
317: learn: 0.0773268 total: 19.2s remaining: 41.2s
318: learn: 0.0771909 total: 19.3s remaining: 41.1s
319: learn: 0.0771140 total: 19.3s remaining: 41.1s
320: learn: 0.0769700 total: 19.4s remaining: 41.1s
321: learn: 0.0767145 total: 19.5s remaining: 41s
322: learn: 0.0765796 total: 19.6s remaining: 41s
323: learn: 0.0764386 total: 19.7s remaining: 41s
324: learn: 0.0763118 total: 19.7s remaining: 41s
325: learn: 0.0760452 total: 19.8s remaining: 41s
326: learn: 0.0759214 total: 19.9s remaining: 41s
327: learn: 0.0758953 total: 19.9s remaining: 40.8s
328: learn: 0.0758316 total: 19.9s remaining: 40.6s
329: learn: 0.0755765 total: 20s remaining: 40.6s
330: learn: 0.0754392 total: 20.1s remaining: 40.7s
331: learn: 0.0753975 total: 20.1s remaining: 40.5s
332: learn: 0.0752450 total: 20.2s remaining: 40.5s
333: learn: 0.0750084 total: 20.3s remaining: 40.4s
334: learn: 0.0747665 total: 20.4s remaining: 40.4s
335: learn: 0.0746458 total: 20.4s remaining: 40.4s
336: learn: 0.0744223 total: 20.5s remaining: 40.4s
337: learn: 0.0742375 total: 20.6s remaining: 40.4s
338: learn: 0.0741206 total: 20.7s remaining: 40.3s
339: learn: 0.0738751 total: 20.8s remaining: 40.3s
340: learn: 0.0738069 total: 20.8s remaining: 40.3s
341: learn: 0.0736982 total: 20.9s remaining: 40.3s
342: learn: 0.0735798 total: 21s remaining: 40.2s
343: learn: 0.0733606 total: 21.1s remaining: 40.2s
344: learn: 0.0731264 total: 21.2s remaining: 40.2s
345: learn: 0.0729077 total: 21.2s remaining: 40.1s
346: learn: 0.0727358 total: 21.3s remaining: 40s
347: learn: 0.0726109 total: 21.4s remaining: 40s
348: learn: 0.0723158 total: 21.4s remaining: 40s
349: learn: 0.0721597 total: 21.5s remaining: 39.9s
350: learn: 0.0720101 total: 21.6s remaining: 39.9s
351: learn: 0.0718753 total: 21.7s remaining: 39.9s
352: learn: 0.0718178 total: 21.7s remaining: 39.8s
353: learn: 0.0716506 total: 21.8s remaining: 39.8s
354: learn: 0.0713943 total: 21.9s remaining: 39.8s
355: learn: 0.0711916 total: 22s remaining: 39.7s
356: learn: 0.0710649 total: 22.1s remaining: 39.7s
357: learn: 0.0709570 total: 22.1s remaining: 39.7s
358: learn: 0.0709018 total: 22.2s remaining: 39.7s
359: learn: 0.0708145 total: 22.3s remaining: 39.6s
360: learn: 0.0707875 total: 22.4s remaining: 39.6s
361: learn: 0.0706960 total: 22.5s remaining: 39.6s
362: learn: 0.0704835 total: 22.5s remaining: 39.6s
363: learn: 0.0704660 total: 22.6s remaining: 39.4s
364: learn: 0.0704422 total: 22.6s remaining: 39.3s
365: learn: 0.0703499 total: 22.7s remaining: 39.3s
366: learn: 0.0702633 total: 22.8s remaining: 39.2s
367: learn: 0.0702122 total: 22.8s remaining: 39.2s
368: learn: 0.0700797 total: 22.9s remaining: 39.1s
369: learn: 0.0699954 total: 23s remaining: 39.1s
370: learn: 0.0698622 total: 23s remaining: 39.1s
371: learn: 0.0697984 total: 23.1s remaining: 39s
372: learn: 0.0697504 total: 23.2s remaining: 39s
373: learn: 0.0696325 total: 23.3s remaining: 39s
374: learn: 0.0695827 total: 23.3s remaining: 38.8s
375: learn: 0.0694660 total: 23.4s remaining: 38.8s
376: learn: 0.0693729 total: 23.4s remaining: 38.8s
377: learn: 0.0691513 total: 23.5s remaining: 38.7s
378: learn: 0.0690860 total: 23.6s remaining: 38.6s
379: learn: 0.0689910 total: 23.7s remaining: 38.6s
380: learn: 0.0688406 total: 23.7s remaining: 38.6s
381: learn: 0.0687428 total: 23.8s remaining: 38.5s
382: learn: 0.0686822 total: 23.9s remaining: 38.5s
383: learn: 0.0685927 total: 24s remaining: 38.5s
384: learn: 0.0684202 total: 24.1s remaining: 38.4s
385: learn: 0.0682822 total: 24.1s remaining: 38.4s
386: learn: 0.0682056 total: 24.2s remaining: 38.4s
387: learn: 0.0681720 total: 24.2s remaining: 38.2s
388: learn: 0.0680716 total: 24.3s remaining: 38.2s
389: learn: 0.0679639 total: 24.4s remaining: 38.2s
390: learn: 0.0677765 total: 24.5s remaining: 38.2s
391: learn: 0.0677630 total: 24.5s remaining: 38s
392: learn: 0.0676595 total: 24.6s remaining: 38s
393: learn: 0.0675553 total: 24.7s remaining: 38s
394: learn: 0.0674711 total: 24.8s remaining: 37.9s
395: learn: 0.0673370 total: 24.8s remaining: 37.9s
396: learn: 0.0673117 total: 24.9s remaining: 37.8s
397: learn: 0.0672352 total: 24.9s remaining: 37.7s
398: learn: 0.0671287 total: 25s remaining: 37.7s
399: learn: 0.0670080 total: 25.1s remaining: 37.6s
400: learn: 0.0668827 total: 25.2s remaining: 37.6s
401: learn: 0.0667930 total: 25.3s remaining: 37.6s
402: learn: 0.0667226 total: 25.3s remaining: 37.5s
403: learn: 0.0666502 total: 25.4s remaining: 37.5s
404: learn: 0.0665833 total: 25.5s remaining: 37.4s
405: learn: 0.0664556 total: 25.6s remaining: 37.4s
406: learn: 0.0663563 total: 25.7s remaining: 37.4s
407: learn: 0.0662776 total: 25.7s remaining: 37.2s
408: learn: 0.0662696 total: 25.7s remaining: 37.1s
409: learn: 0.0662331 total: 25.7s remaining: 37s
410: learn: 0.0662140 total: 25.8s remaining: 36.9s
411: learn: 0.0660842 total: 25.9s remaining: 36.9s
412: learn: 0.0659252 total: 25.9s remaining: 36.9s
413: learn: 0.0658368 total: 26s remaining: 36.8s
414: learn: 0.0657215 total: 26.1s remaining: 36.8s
415: learn: 0.0656556 total: 26.2s remaining: 36.8s
416: learn: 0.0655536 total: 26.3s remaining: 36.7s
417: learn: 0.0655416 total: 26.3s remaining: 36.6s
418: learn: 0.0655031 total: 26.4s remaining: 36.5s
419: learn: 0.0654451 total: 26.4s remaining: 36.5s
420: learn: 0.0653336 total: 26.5s remaining: 36.5s
421: learn: 0.0652475 total: 26.6s remaining: 36.4s
422: learn: 0.0652147 total: 26.6s remaining: 36.3s
423: learn: 0.0650865 total: 26.7s remaining: 36.3s
424: learn: 0.0649944 total: 26.8s remaining: 36.2s
425: learn: 0.0649487 total: 26.9s remaining: 36.2s
426: learn: 0.0648933 total: 26.9s remaining: 36.2s
427: learn: 0.0647768 total: 27s remaining: 36.1s
428: learn: 0.0646220 total: 27.1s remaining: 36.1s
429: learn: 0.0645673 total: 27.2s remaining: 36s
430: learn: 0.0644823 total: 27.3s remaining: 36s
431: learn: 0.0644046 total: 27.4s remaining: 36s
432: learn: 0.0643120 total: 27.4s remaining: 35.9s
433: learn: 0.0642234 total: 27.5s remaining: 35.9s
434: learn: 0.0641458 total: 27.6s remaining: 35.8s
435: learn: 0.0640602 total: 27.7s remaining: 35.8s
436: learn: 0.0639917 total: 27.8s remaining: 35.8s
437: learn: 0.0638438 total: 27.8s remaining: 35.7s
438: learn: 0.0637128 total: 27.9s remaining: 35.7s
439: learn: 0.0636231 total: 28s remaining: 35.7s
440: learn: 0.0635662 total: 28.1s remaining: 35.6s
441: learn: 0.0634986 total: 28.2s remaining: 35.6s
442: learn: 0.0634137 total: 28.3s remaining: 35.5s
443: learn: 0.0633724 total: 28.3s remaining: 35.5s
444: learn: 0.0632873 total: 28.4s remaining: 35.4s
445: learn: 0.0632346 total: 28.5s remaining: 35.4s
446: learn: 0.0631867 total: 28.6s remaining: 35.3s
447: learn: 0.0631247 total: 28.7s remaining: 35.3s
448: learn: 0.0630819 total: 28.7s remaining: 35.3s
449: learn: 0.0630281 total: 28.8s remaining: 35.2s
450: learn: 0.0629809 total: 28.9s remaining: 35.2s
451: learn: 0.0629226 total: 29s remaining: 35.1s
452: learn: 0.0628627 total: 29.1s remaining: 35.1s
453: learn: 0.0627670 total: 29.1s remaining: 35s
454: learn: 0.0627075 total: 29.2s remaining: 35s
455: learn: 0.0626426 total: 29.3s remaining: 35s
456: learn: 0.0625294 total: 29.4s remaining: 34.9s
457: learn: 0.0624632 total: 29.5s remaining: 34.9s
458: learn: 0.0623462 total: 29.5s remaining: 34.8s
459: learn: 0.0622866 total: 29.6s remaining: 34.8s
460: learn: 0.0622428 total: 29.7s remaining: 34.7s
461: learn: 0.0622024 total: 29.8s remaining: 34.7s
462: learn: 0.0621693 total: 29.9s remaining: 34.6s
463: learn: 0.0620835 total: 29.9s remaining: 34.6s
464: learn: 0.0620437 total: 30s remaining: 34.5s
465: learn: 0.0620116 total: 30s remaining: 34.4s
466: learn: 0.0619525 total: 30.1s remaining: 34.4s
467: learn: 0.0619261 total: 30.2s remaining: 34.3s
468: learn: 0.0618856 total: 30.3s remaining: 34.3s
469: learn: 0.0618618 total: 30.4s remaining: 34.3s
470: learn: 0.0617853 total: 30.5s remaining: 34.2s
471: learn: 0.0616711 total: 30.6s remaining: 34.2s
472: learn: 0.0616231 total: 30.6s remaining: 34.1s
473: learn: 0.0615676 total: 30.7s remaining: 34s
474: learn: 0.0614766 total: 30.8s remaining: 34s
475: learn: 0.0614160 total: 30.9s remaining: 34s
476: learn: 0.0613391 total: 30.9s remaining: 33.9s
477: learn: 0.0612957 total: 31s remaining: 33.9s
478: learn: 0.0612656 total: 31.1s remaining: 33.8s
479: learn: 0.0611741 total: 31.2s remaining: 33.8s
480: learn: 0.0611504 total: 31.2s remaining: 33.7s
481: learn: 0.0610432 total: 31.3s remaining: 33.7s
482: learn: 0.0609883 total: 31.4s remaining: 33.6s
483: learn: 0.0608631 total: 31.5s remaining: 33.6s
484: learn: 0.0608306 total: 31.6s remaining: 33.5s
485: learn: 0.0607123 total: 31.6s remaining: 33.5s
486: learn: 0.0606671 total: 31.7s remaining: 33.4s
487: learn: 0.0605979 total: 31.8s remaining: 33.4s
488: learn: 0.0604872 total: 31.9s remaining: 33.3s
489: learn: 0.0603922 total: 32s remaining: 33.3s
490: learn: 0.0602644 total: 32s remaining: 33.2s
491: learn: 0.0601780 total: 32.1s remaining: 33.2s
492: learn: 0.0601248 total: 32.2s remaining: 33.1s
493: learn: 0.0600746 total: 32.3s remaining: 33.1s
494: learn: 0.0600219 total: 32.4s remaining: 33s
495: learn: 0.0599442 total: 32.5s remaining: 33s
496: learn: 0.0598624 total: 32.5s remaining: 32.9s
497: learn: 0.0598182 total: 32.6s remaining: 32.9s
498: learn: 0.0597954 total: 32.7s remaining: 32.8s
499: learn: 0.0597308 total: 32.8s remaining: 32.8s
500: learn: 0.0596585 total: 32.9s remaining: 32.7s
501: learn: 0.0596202 total: 32.9s remaining: 32.7s
502: learn: 0.0595124 total: 33s remaining: 32.6s
503: learn: 0.0594510 total: 33.1s remaining: 32.6s
504: learn: 0.0593790 total: 33.2s remaining: 32.5s
505: learn: 0.0593038 total: 33.3s remaining: 32.5s
506: learn: 0.0591878 total: 33.3s remaining: 32.4s
507: learn: 0.0591315 total: 33.4s remaining: 32.4s
508: learn: 0.0590626 total: 33.5s remaining: 32.3s
509: learn: 0.0589951 total: 33.6s remaining: 32.3s
510: learn: 0.0589847 total: 33.7s remaining: 32.2s
511: learn: 0.0589442 total: 33.7s remaining: 32.2s
512: learn: 0.0589154 total: 33.8s remaining: 32.1s
513: learn: 0.0588723 total: 33.9s remaining: 32.1s
514: learn: 0.0588471 total: 34s remaining: 32s
515: learn: 0.0588147 total: 34.1s remaining: 31.9s
516: learn: 0.0587502 total: 34.1s remaining: 31.9s
517: learn: 0.0587225 total: 34.2s remaining: 31.8s
518: learn: 0.0586514 total: 34.3s remaining: 31.8s
519: learn: 0.0585996 total: 34.4s remaining: 31.7s
520: learn: 0.0585270 total: 34.5s remaining: 31.7s
521: learn: 0.0584892 total: 34.5s remaining: 31.6s
522: learn: 0.0584533 total: 34.6s remaining: 31.6s
523: learn: 0.0583926 total: 34.7s remaining: 31.5s
524: learn: 0.0583423 total: 34.8s remaining: 31.5s
525: learn: 0.0582639 total: 34.9s remaining: 31.4s
526: learn: 0.0582035 total: 34.9s remaining: 31.4s
527: learn: 0.0581350 total: 35s remaining: 31.3s
528: learn: 0.0581145 total: 35.1s remaining: 31.3s
529: learn: 0.0580438 total: 35.2s remaining: 31.2s
530: learn: 0.0580047 total: 35.3s remaining: 31.1s
531: learn: 0.0579979 total: 35.3s remaining: 31s
532: learn: 0.0579513 total: 35.4s remaining: 31s
533: learn: 0.0578789 total: 35.4s remaining: 30.9s
534: learn: 0.0578597 total: 35.5s remaining: 30.9s
535: learn: 0.0578236 total: 35.6s remaining: 30.8s
536: learn: 0.0577576 total: 35.6s remaining: 30.7s
537: learn: 0.0577555 total: 35.6s remaining: 30.6s
538: learn: 0.0576661 total: 35.7s remaining: 30.6s
539: learn: 0.0576423 total: 35.8s remaining: 30.5s
540: learn: 0.0576112 total: 35.9s remaining: 30.5s
541: learn: 0.0576056 total: 35.9s remaining: 30.3s
542: learn: 0.0575204 total: 36s remaining: 30.3s
543: learn: 0.0574944 total: 36.1s remaining: 30.2s
544: learn: 0.0574624 total: 36.1s remaining: 30.2s
545: learn: 0.0574339 total: 36.2s remaining: 30.1s
546: learn: 0.0574113 total: 36.2s remaining: 30s
547: learn: 0.0573514 total: 36.3s remaining: 30s
548: learn: 0.0572865 total: 36.4s remaining: 29.9s
549: learn: 0.0572687 total: 36.5s remaining: 29.8s
550: learn: 0.0572307 total: 36.6s remaining: 29.8s
551: learn: 0.0571639 total: 36.6s remaining: 29.7s
552: learn: 0.0571003 total: 36.7s remaining: 29.7s
553: learn: 0.0570416 total: 36.8s remaining: 29.6s
554: learn: 0.0570358 total: 36.8s remaining: 29.5s
555: learn: 0.0570145 total: 36.9s remaining: 29.5s
556: learn: 0.0570025 total: 37s remaining: 29.4s
557: learn: 0.0569711 total: 37s remaining: 29.3s
558: learn: 0.0569280 total: 37.1s remaining: 29.2s
559: learn: 0.0568576 total: 37.2s remaining: 29.2s
560: learn: 0.0567969 total: 37.2s remaining: 29.1s
561: learn: 0.0567652 total: 37.2s remaining: 29s
562: learn: 0.0567616 total: 37.3s remaining: 28.9s
563: learn: 0.0567243 total: 37.3s remaining: 28.9s
564: learn: 0.0566695 total: 37.4s remaining: 28.8s
565: learn: 0.0566430 total: 37.5s remaining: 28.8s
566: learn: 0.0566045 total: 37.6s remaining: 28.7s
567: learn: 0.0566044 total: 37.6s remaining: 28.6s
568: learn: 0.0566016 total: 37.6s remaining: 28.5s
569: learn: 0.0565509 total: 37.7s remaining: 28.4s
570: learn: 0.0565482 total: 37.7s remaining: 28.3s
571: learn: 0.0564908 total: 37.8s remaining: 28.2s
572: learn: 0.0564157 total: 37.8s remaining: 28.2s
573: learn: 0.0563966 total: 37.9s remaining: 28.1s
574: learn: 0.0563267 total: 38s remaining: 28.1s
575: learn: 0.0563010 total: 38.1s remaining: 28s
576: learn: 0.0562972 total: 38.1s remaining: 27.9s
577: learn: 0.0562788 total: 38.1s remaining: 27.8s
578: learn: 0.0562703 total: 38.1s remaining: 27.7s
579: learn: 0.0562224 total: 38.2s remaining: 27.6s
580: learn: 0.0562128 total: 38.2s remaining: 27.5s
581: learn: 0.0561442 total: 38.3s remaining: 27.5s
582: learn: 0.0561258 total: 38.3s remaining: 27.4s
583: learn: 0.0560771 total: 38.4s remaining: 27.4s
584: learn: 0.0560251 total: 38.5s remaining: 27.3s
585: learn: 0.0560085 total: 38.6s remaining: 27.3s
586: learn: 0.0559557 total: 38.7s remaining: 27.2s
587: learn: 0.0559067 total: 38.7s remaining: 27.1s
588: learn: 0.0558655 total: 38.8s remaining: 27.1s
589: learn: 0.0558199 total: 38.9s remaining: 27s
590: learn: 0.0557767 total: 39s remaining: 27s
591: learn: 0.0557538 total: 39.1s remaining: 26.9s
592: learn: 0.0557506 total: 39.1s remaining: 26.8s
593: learn: 0.0557241 total: 39.2s remaining: 26.8s
594: learn: 0.0556955 total: 39.2s remaining: 26.7s
595: learn: 0.0556704 total: 39.3s remaining: 26.6s
596: learn: 0.0556488 total: 39.4s remaining: 26.6s
597: learn: 0.0556369 total: 39.5s remaining: 26.5s
598: learn: 0.0556082 total: 39.6s remaining: 26.5s
599: learn: 0.0555476 total: 39.6s remaining: 26.4s
600: learn: 0.0555254 total: 39.7s remaining: 26.3s
601: learn: 0.0555042 total: 39.7s remaining: 26.3s
602: learn: 0.0554939 total: 39.8s remaining: 26.2s
603: learn: 0.0554583 total: 39.9s remaining: 26.2s
604: learn: 0.0554121 total: 40s remaining: 26.1s
605: learn: 0.0553839 total: 40.1s remaining: 26s
606: learn: 0.0553179 total: 40.1s remaining: 26s
607: learn: 0.0552890 total: 40.2s remaining: 25.9s
608: learn: 0.0552693 total: 40.3s remaining: 25.9s
609: learn: 0.0552215 total: 40.4s remaining: 25.8s
610: learn: 0.0551917 total: 40.5s remaining: 25.8s
611: learn: 0.0551509 total: 40.6s remaining: 25.7s
612: learn: 0.0551163 total: 40.6s remaining: 25.7s
613: learn: 0.0550651 total: 40.7s remaining: 25.6s
614: learn: 0.0549956 total: 40.8s remaining: 25.5s
615: learn: 0.0549358 total: 40.9s remaining: 25.5s
616: learn: 0.0548813 total: 40.9s remaining: 25.4s
617: learn: 0.0548195 total: 41s remaining: 25.3s
618: learn: 0.0547734 total: 41.1s remaining: 25.3s
619: learn: 0.0547143 total: 41.1s remaining: 25.2s
620: learn: 0.0546948 total: 41.2s remaining: 25.2s
621: learn: 0.0546472 total: 41.3s remaining: 25.1s
622: learn: 0.0546137 total: 41.4s remaining: 25s
623: learn: 0.0545772 total: 41.5s remaining: 25s
624: learn: 0.0545610 total: 41.5s remaining: 24.9s
625: learn: 0.0545310 total: 41.6s remaining: 24.9s
626: learn: 0.0544733 total: 41.7s remaining: 24.8s
627: learn: 0.0544322 total: 41.8s remaining: 24.8s
628: learn: 0.0543813 total: 41.9s remaining: 24.7s
629: learn: 0.0543221 total: 42s remaining: 24.6s
630: learn: 0.0542785 total: 42s remaining: 24.6s
631: learn: 0.0542340 total: 42.1s remaining: 24.5s
632: learn: 0.0542043 total: 42.2s remaining: 24.5s
633: learn: 0.0541720 total: 42.3s remaining: 24.4s
634: learn: 0.0541348 total: 42.4s remaining: 24.4s
635: learn: 0.0541280 total: 42.4s remaining: 24.2s
636: learn: 0.0540815 total: 42.4s remaining: 24.2s
637: learn: 0.0540410 total: 42.5s remaining: 24.1s
638: learn: 0.0540121 total: 42.6s remaining: 24.1s
639: learn: 0.0539801 total: 42.7s remaining: 24s
640: learn: 0.0539751 total: 42.7s remaining: 23.9s
641: learn: 0.0539553 total: 42.8s remaining: 23.9s
642: learn: 0.0539153 total: 42.9s remaining: 23.8s
643: learn: 0.0538733 total: 42.9s remaining: 23.7s
644: learn: 0.0538325 total: 43s remaining: 23.7s
645: learn: 0.0538109 total: 43.1s remaining: 23.6s
646: learn: 0.0537777 total: 43.2s remaining: 23.6s
647: learn: 0.0537541 total: 43.3s remaining: 23.5s
648: learn: 0.0537379 total: 43.3s remaining: 23.4s
649: learn: 0.0536988 total: 43.4s remaining: 23.4s
650: learn: 0.0536781 total: 43.5s remaining: 23.3s
651: learn: 0.0536645 total: 43.5s remaining: 23.2s
652: learn: 0.0536346 total: 43.6s remaining: 23.2s
653: learn: 0.0536225 total: 43.7s remaining: 23.1s
654: learn: 0.0535963 total: 43.8s remaining: 23s
655: learn: 0.0535883 total: 43.8s remaining: 23s
656: learn: 0.0535883 total: 43.8s remaining: 22.9s
657: learn: 0.0535780 total: 43.9s remaining: 22.8s
658: learn: 0.0535419 total: 44s remaining: 22.8s
659: learn: 0.0535116 total: 44.1s remaining: 22.7s
660: learn: 0.0534520 total: 44.2s remaining: 22.7s
661: learn: 0.0534199 total: 44.3s remaining: 22.6s
662: learn: 0.0533850 total: 44.3s remaining: 22.5s
663: learn: 0.0533775 total: 44.4s remaining: 22.5s
664: learn: 0.0533391 total: 44.5s remaining: 22.4s
665: learn: 0.0533314 total: 44.5s remaining: 22.3s
666: learn: 0.0532823 total: 44.6s remaining: 22.3s
667: learn: 0.0532240 total: 44.7s remaining: 22.2s
668: learn: 0.0532200 total: 44.7s remaining: 22.1s
669: learn: 0.0531951 total: 44.7s remaining: 22s
670: learn: 0.0531700 total: 44.8s remaining: 21.9s
671: learn: 0.0531532 total: 44.8s remaining: 21.9s
672: learn: 0.0531407 total: 44.9s remaining: 21.8s
673: learn: 0.0531192 total: 45s remaining: 21.8s
674: learn: 0.0530832 total: 45.1s remaining: 21.7s
675: learn: 0.0530787 total: 45.1s remaining: 21.6s
676: learn: 0.0530344 total: 45.2s remaining: 21.5s
677: learn: 0.0529996 total: 45.2s remaining: 21.5s
678: learn: 0.0529649 total: 45.3s remaining: 21.4s
679: learn: 0.0529292 total: 45.4s remaining: 21.4s
680: learn: 0.0529233 total: 45.4s remaining: 21.3s
681: learn: 0.0528912 total: 45.5s remaining: 21.2s
682: learn: 0.0528811 total: 45.6s remaining: 21.2s
683: learn: 0.0528611 total: 45.7s remaining: 21.1s
684: learn: 0.0528421 total: 45.8s remaining: 21.1s
685: learn: 0.0528292 total: 45.9s remaining: 21s
686: learn: 0.0528068 total: 45.9s remaining: 20.9s
687: learn: 0.0527948 total: 46s remaining: 20.9s
688: learn: 0.0527652 total: 46.1s remaining: 20.8s
689: learn: 0.0527163 total: 46.2s remaining: 20.7s
690: learn: 0.0526741 total: 46.3s remaining: 20.7s
691: learn: 0.0526589 total: 46.3s remaining: 20.6s
692: learn: 0.0526302 total: 46.4s remaining: 20.6s
693: learn: 0.0526016 total: 46.5s remaining: 20.5s
694: learn: 0.0525761 total: 46.6s remaining: 20.4s
695: learn: 0.0525395 total: 46.7s remaining: 20.4s
696: learn: 0.0525001 total: 46.7s remaining: 20.3s
697: learn: 0.0524684 total: 46.8s remaining: 20.3s
698: learn: 0.0524328 total: 46.9s remaining: 20.2s
699: learn: 0.0524017 total: 47s remaining: 20.1s
700: learn: 0.0523965 total: 47s remaining: 20s
701: learn: 0.0523931 total: 47.1s remaining: 20s
702: learn: 0.0523444 total: 47.1s remaining: 19.9s
703: learn: 0.0523082 total: 47.2s remaining: 19.9s
704: learn: 0.0523046 total: 47.2s remaining: 19.8s
705: learn: 0.0522693 total: 47.3s remaining: 19.7s
706: learn: 0.0522304 total: 47.4s remaining: 19.6s
707: learn: 0.0521832 total: 47.5s remaining: 19.6s
708: learn: 0.0521677 total: 47.5s remaining: 19.5s
709: learn: 0.0521393 total: 47.6s remaining: 19.5s
710: learn: 0.0521192 total: 47.7s remaining: 19.4s
711: learn: 0.0520910 total: 47.8s remaining: 19.3s
712: learn: 0.0520517 total: 47.9s remaining: 19.3s
713: learn: 0.0520207 total: 47.9s remaining: 19.2s
714: learn: 0.0519936 total: 48s remaining: 19.1s
715: learn: 0.0519737 total: 48.1s remaining: 19.1s
716: learn: 0.0519543 total: 48.2s remaining: 19s
717: learn: 0.0519059 total: 48.3s remaining: 19s
718: learn: 0.0519015 total: 48.3s remaining: 18.9s
719: learn: 0.0518879 total: 48.4s remaining: 18.8s
720: learn: 0.0518622 total: 48.5s remaining: 18.8s
721: learn: 0.0518434 total: 48.5s remaining: 18.7s
722: learn: 0.0518251 total: 48.6s remaining: 18.6s
723: learn: 0.0518006 total: 48.7s remaining: 18.6s
724: learn: 0.0517861 total: 48.8s remaining: 18.5s
725: learn: 0.0517640 total: 48.9s remaining: 18.4s
726: learn: 0.0517639 total: 48.9s remaining: 18.4s
727: learn: 0.0517346 total: 49s remaining: 18.3s
728: learn: 0.0517253 total: 49s remaining: 18.2s
729: learn: 0.0516807 total: 49.1s remaining: 18.1s
730: learn: 0.0516806 total: 49.1s remaining: 18.1s
731: learn: 0.0516739 total: 49.1s remaining: 18s
732: learn: 0.0516491 total: 49.2s remaining: 17.9s
733: learn: 0.0516491 total: 49.2s remaining: 17.8s
734: learn: 0.0515986 total: 49.3s remaining: 17.8s
735: learn: 0.0515787 total: 49.3s remaining: 17.7s
736: learn: 0.0515602 total: 49.4s remaining: 17.6s
737: learn: 0.0515559 total: 49.5s remaining: 17.6s
738: learn: 0.0515476 total: 49.5s remaining: 17.5s
739: learn: 0.0515234 total: 49.6s remaining: 17.4s
740: learn: 0.0514953 total: 49.7s remaining: 17.4s
741: learn: 0.0514785 total: 49.8s remaining: 17.3s
742: learn: 0.0514769 total: 49.8s remaining: 17.2s
743: learn: 0.0514759 total: 49.8s remaining: 17.1s
744: learn: 0.0514683 total: 49.8s remaining: 17s
745: learn: 0.0514682 total: 49.8s remaining: 16.9s
746: learn: 0.0514407 total: 49.9s remaining: 16.9s
747: learn: 0.0514155 total: 49.9s remaining: 16.8s
748: learn: 0.0513860 total: 50s remaining: 16.7s
749: learn: 0.0513621 total: 50s remaining: 16.7s
750: learn: 0.0513435 total: 50.1s remaining: 16.6s
751: learn: 0.0513006 total: 50.2s remaining: 16.6s
752: learn: 0.0512598 total: 50.3s remaining: 16.5s
753: learn: 0.0512391 total: 50.4s remaining: 16.4s
754: learn: 0.0512084 total: 50.5s remaining: 16.4s
755: learn: 0.0512066 total: 50.5s remaining: 16.3s
756: learn: 0.0511812 total: 50.5s remaining: 16.2s
757: learn: 0.0511776 total: 50.5s remaining: 16.1s
758: learn: 0.0511644 total: 50.6s remaining: 16.1s
759: learn: 0.0511427 total: 50.7s remaining: 16s
760: learn: 0.0511171 total: 50.8s remaining: 15.9s
761: learn: 0.0510823 total: 50.8s remaining: 15.9s
762: learn: 0.0510748 total: 50.9s remaining: 15.8s
763: learn: 0.0510643 total: 50.9s remaining: 15.7s
764: learn: 0.0510521 total: 51s remaining: 15.7s
765: learn: 0.0510316 total: 51s remaining: 15.6s
766: learn: 0.0510176 total: 51.1s remaining: 15.5s
767: learn: 0.0510026 total: 51.2s remaining: 15.5s
768: learn: 0.0509902 total: 51.3s remaining: 15.4s
769: learn: 0.0509799 total: 51.4s remaining: 15.3s
770: learn: 0.0509573 total: 51.4s remaining: 15.3s
771: learn: 0.0509404 total: 51.5s remaining: 15.2s
772: learn: 0.0509252 total: 51.6s remaining: 15.2s
773: learn: 0.0509216 total: 51.7s remaining: 15.1s
774: learn: 0.0508946 total: 51.8s remaining: 15s
775: learn: 0.0508798 total: 51.8s remaining: 15s
776: learn: 0.0508618 total: 51.9s remaining: 14.9s
777: learn: 0.0508549 total: 52s remaining: 14.8s
778: learn: 0.0508241 total: 52s remaining: 14.8s
779: learn: 0.0508036 total: 52.1s remaining: 14.7s
780: learn: 0.0507911 total: 52.2s remaining: 14.6s
781: learn: 0.0507803 total: 52.3s remaining: 14.6s
782: learn: 0.0507605 total: 52.4s remaining: 14.5s
783: learn: 0.0507604 total: 52.4s remaining: 14.4s
784: learn: 0.0507474 total: 52.5s remaining: 14.4s
785: learn: 0.0507139 total: 52.5s remaining: 14.3s
786: learn: 0.0507050 total: 52.6s remaining: 14.2s
787: learn: 0.0506937 total: 52.7s remaining: 14.2s
788: learn: 0.0506593 total: 52.8s remaining: 14.1s
789: learn: 0.0506356 total: 52.9s remaining: 14s
790: learn: 0.0506036 total: 52.9s remaining: 14s
791: learn: 0.0505768 total: 53s remaining: 13.9s
792: learn: 0.0505455 total: 53.1s remaining: 13.9s
793: learn: 0.0505455 total: 53.1s remaining: 13.8s
794: learn: 0.0505376 total: 53.2s remaining: 13.7s
795: learn: 0.0505344 total: 53.2s remaining: 13.6s
796: learn: 0.0505222 total: 53.3s remaining: 13.6s
797: learn: 0.0505047 total: 53.4s remaining: 13.5s
798: learn: 0.0504874 total: 53.4s remaining: 13.4s
799: learn: 0.0504531 total: 53.5s remaining: 13.4s
800: learn: 0.0504323 total: 53.6s remaining: 13.3s
801: learn: 0.0504025 total: 53.7s remaining: 13.3s
802: learn: 0.0503826 total: 53.8s remaining: 13.2s
803: learn: 0.0503826 total: 53.8s remaining: 13.1s
804: learn: 0.0503747 total: 53.9s remaining: 13s
805: learn: 0.0503445 total: 53.9s remaining: 13s
806: learn: 0.0503168 total: 54s remaining: 12.9s
807: learn: 0.0502967 total: 54.1s remaining: 12.9s
808: learn: 0.0502850 total: 54.2s remaining: 12.8s
809: learn: 0.0502785 total: 54.2s remaining: 12.7s
810: learn: 0.0502558 total: 54.3s remaining: 12.7s
811: learn: 0.0502286 total: 54.4s remaining: 12.6s
812: learn: 0.0502024 total: 54.5s remaining: 12.5s
813: learn: 0.0501775 total: 54.5s remaining: 12.5s
814: learn: 0.0501774 total: 54.5s remaining: 12.4s
815: learn: 0.0501544 total: 54.6s remaining: 12.3s
816: learn: 0.0501311 total: 54.7s remaining: 12.2s
817: learn: 0.0501118 total: 54.8s remaining: 12.2s
818: learn: 0.0500872 total: 54.8s remaining: 12.1s
819: learn: 0.0500770 total: 54.9s remaining: 12.1s
820: learn: 0.0500710 total: 55s remaining: 12s
821: learn: 0.0500498 total: 55.1s remaining: 11.9s
822: learn: 0.0500335 total: 55.2s remaining: 11.9s
823: learn: 0.0500208 total: 55.2s remaining: 11.8s
824: learn: 0.0500152 total: 55.3s remaining: 11.7s
825: learn: 0.0500075 total: 55.4s remaining: 11.7s
826: learn: 0.0500043 total: 55.5s remaining: 11.6s
827: learn: 0.0499862 total: 55.6s remaining: 11.5s
828: learn: 0.0499706 total: 55.6s remaining: 11.5s
829: learn: 0.0499416 total: 55.7s remaining: 11.4s
830: learn: 0.0499375 total: 55.8s remaining: 11.3s
831: learn: 0.0499345 total: 55.8s remaining: 11.3s
832: learn: 0.0499043 total: 55.9s remaining: 11.2s
833: learn: 0.0498772 total: 56s remaining: 11.1s
834: learn: 0.0498745 total: 56.1s remaining: 11.1s
835: learn: 0.0498592 total: 56.1s remaining: 11s
836: learn: 0.0498441 total: 56.2s remaining: 10.9s
837: learn: 0.0498164 total: 56.3s remaining: 10.9s
838: learn: 0.0498028 total: 56.4s remaining: 10.8s
839: learn: 0.0497924 total: 56.5s remaining: 10.8s
840: learn: 0.0497684 total: 56.6s remaining: 10.7s
841: learn: 0.0497584 total: 56.6s remaining: 10.6s
842: learn: 0.0497366 total: 56.7s remaining: 10.6s
843: learn: 0.0497284 total: 56.8s remaining: 10.5s
844: learn: 0.0497170 total: 56.9s remaining: 10.4s
845: learn: 0.0497163 total: 56.9s remaining: 10.4s
846: learn: 0.0496952 total: 56.9s remaining: 10.3s
847: learn: 0.0496952 total: 56.9s remaining: 10.2s
848: learn: 0.0496852 total: 57s remaining: 10.1s
849: learn: 0.0496637 total: 57.1s remaining: 10.1s
850: learn: 0.0496536 total: 57.2s remaining: 10s
851: learn: 0.0496440 total: 57.2s remaining: 9.94s
852: learn: 0.0496241 total: 57.3s remaining: 9.88s
853: learn: 0.0496156 total: 57.4s remaining: 9.81s
854: learn: 0.0496015 total: 57.5s remaining: 9.75s
855: learn: 0.0495849 total: 57.6s remaining: 9.68s
856: learn: 0.0495672 total: 57.6s remaining: 9.62s
857: learn: 0.0495489 total: 57.7s remaining: 9.55s
858: learn: 0.0495285 total: 57.8s remaining: 9.49s
859: learn: 0.0495165 total: 57.9s remaining: 9.42s
860: learn: 0.0495049 total: 58s remaining: 9.36s
861: learn: 0.0494951 total: 58s remaining: 9.29s
862: learn: 0.0494693 total: 58.1s remaining: 9.23s
863: learn: 0.0494637 total: 58.2s remaining: 9.16s
864: learn: 0.0494637 total: 58.2s remaining: 9.08s
865: learn: 0.0494380 total: 58.3s remaining: 9.02s
866: learn: 0.0494372 total: 58.4s remaining: 8.95s
867: learn: 0.0494135 total: 58.4s remaining: 8.88s
868: learn: 0.0493852 total: 58.5s remaining: 8.81s
869: learn: 0.0493704 total: 58.5s remaining: 8.75s
870: learn: 0.0493704 total: 58.5s remaining: 8.67s
871: learn: 0.0493493 total: 58.6s remaining: 8.6s
872: learn: 0.0493493 total: 58.6s remaining: 8.53s
873: learn: 0.0493342 total: 58.7s remaining: 8.46s
874: learn: 0.0493237 total: 58.7s remaining: 8.39s
875: learn: 0.0493067 total: 58.8s remaining: 8.32s
876: learn: 0.0492978 total: 58.8s remaining: 8.25s
877: learn: 0.0492735 total: 58.9s remaining: 8.18s
878: learn: 0.0492658 total: 58.9s remaining: 8.11s
879: learn: 0.0492395 total: 59s remaining: 8.04s
880: learn: 0.0492164 total: 59s remaining: 7.97s
881: learn: 0.0492039 total: 59.1s remaining: 7.91s
882: learn: 0.0491852 total: 59.2s remaining: 7.84s
883: learn: 0.0491852 total: 59.2s remaining: 7.76s
884: learn: 0.0491851 total: 59.2s remaining: 7.69s
885: learn: 0.0491670 total: 59.2s remaining: 7.62s
886: learn: 0.0491507 total: 59.3s remaining: 7.55s
887: learn: 0.0491381 total: 59.4s remaining: 7.49s
888: learn: 0.0491154 total: 59.4s remaining: 7.42s
889: learn: 0.0491012 total: 59.5s remaining: 7.35s
890: learn: 0.0490930 total: 59.5s remaining: 7.28s
891: learn: 0.0490792 total: 59.6s remaining: 7.21s
892: learn: 0.0490792 total: 59.6s remaining: 7.14s
893: learn: 0.0490739 total: 59.6s remaining: 7.07s
894: learn: 0.0490451 total: 59.7s remaining: 7s
895: learn: 0.0490220 total: 59.7s remaining: 6.93s
896: learn: 0.0490141 total: 59.7s remaining: 6.86s
897: learn: 0.0489974 total: 59.8s remaining: 6.79s
898: learn: 0.0489858 total: 59.8s remaining: 6.72s
899: learn: 0.0489852 total: 59.9s remaining: 6.65s
900: learn: 0.0489770 total: 59.9s remaining: 6.58s
901: learn: 0.0489587 total: 60s remaining: 6.52s
902: learn: 0.0489458 total: 1m remaining: 6.45s
903: learn: 0.0489361 total: 1m remaining: 6.38s
904: learn: 0.0489139 total: 1m remaining: 6.32s
905: learn: 0.0489041 total: 1m remaining: 6.25s
906: learn: 0.0489041 total: 1m remaining: 6.18s
907: learn: 0.0488924 total: 1m remaining: 6.11s
908: learn: 0.0488831 total: 1m remaining: 6.04s
909: learn: 0.0488636 total: 1m remaining: 5.98s
910: learn: 0.0488445 total: 1m remaining: 5.91s
911: learn: 0.0488279 total: 1m remaining: 5.84s
912: learn: 0.0488278 total: 1m remaining: 5.76s
913: learn: 0.0488112 total: 1m remaining: 5.7s
914: learn: 0.0487917 total: 1m remaining: 5.63s
915: learn: 0.0487757 total: 1m remaining: 5.57s
916: learn: 0.0487548 total: 1m remaining: 5.5s
917: learn: 0.0487503 total: 1m remaining: 5.43s
918: learn: 0.0487350 total: 1m remaining: 5.36s
919: learn: 0.0487270 total: 1m remaining: 5.29s
920: learn: 0.0487001 total: 1m remaining: 5.23s
921: learn: 0.0487001 total: 1m remaining: 5.16s
922: learn: 0.0486902 total: 1m remaining: 5.08s
923: learn: 0.0486902 total: 1m remaining: 5.01s
924: learn: 0.0486807 total: 1m 1s remaining: 4.95s
925: learn: 0.0486789 total: 1m 1s remaining: 4.88s
926: learn: 0.0486717 total: 1m 1s remaining: 4.81s
927: learn: 0.0486567 total: 1m 1s remaining: 4.75s
928: learn: 0.0486567 total: 1m 1s remaining: 4.67s
929: learn: 0.0486428 total: 1m 1s remaining: 4.61s
930: learn: 0.0486347 total: 1m 1s remaining: 4.54s
931: learn: 0.0486260 total: 1m 1s remaining: 4.47s
932: learn: 0.0486114 total: 1m 1s remaining: 4.41s
933: learn: 0.0486028 total: 1m 1s remaining: 4.34s
934: learn: 0.0485810 total: 1m 1s remaining: 4.27s
935: learn: 0.0485567 total: 1m 1s remaining: 4.21s
936: learn: 0.0485481 total: 1m 1s remaining: 4.14s
937: learn: 0.0485389 total: 1m 1s remaining: 4.08s
938: learn: 0.0485326 total: 1m 1s remaining: 4.01s
939: learn: 0.0485190 total: 1m 1s remaining: 3.94s
940: learn: 0.0485043 total: 1m 1s remaining: 3.87s
941: learn: 0.0484906 total: 1m 1s remaining: 3.81s
942: learn: 0.0484815 total: 1m 1s remaining: 3.74s
943: learn: 0.0484684 total: 1m 1s remaining: 3.67s
944: learn: 0.0484594 total: 1m 1s remaining: 3.61s
945: learn: 0.0484474 total: 1m 2s remaining: 3.54s
946: learn: 0.0484398 total: 1m 2s remaining: 3.47s
947: learn: 0.0484324 total: 1m 2s remaining: 3.41s
948: learn: 0.0484188 total: 1m 2s remaining: 3.34s
949: learn: 0.0484188 total: 1m 2s remaining: 3.27s
950: learn: 0.0484104 total: 1m 2s remaining: 3.21s
951: learn: 0.0483957 total: 1m 2s remaining: 3.14s
952: learn: 0.0483880 total: 1m 2s remaining: 3.08s
953: learn: 0.0483805 total: 1m 2s remaining: 3.01s
954: learn: 0.0483613 total: 1m 2s remaining: 2.95s
955: learn: 0.0483613 total: 1m 2s remaining: 2.88s
956: learn: 0.0483527 total: 1m 2s remaining: 2.81s
957: learn: 0.0483453 total: 1m 2s remaining: 2.75s
958: learn: 0.0483278 total: 1m 2s remaining: 2.68s
959: learn: 0.0483195 total: 1m 2s remaining: 2.62s
960: learn: 0.0482972 total: 1m 2s remaining: 2.55s
961: learn: 0.0482971 total: 1m 2s remaining: 2.49s
962: learn: 0.0482848 total: 1m 3s remaining: 2.42s
963: learn: 0.0482810 total: 1m 3s remaining: 2.36s
964: learn: 0.0482642 total: 1m 3s remaining: 2.29s
965: learn: 0.0482608 total: 1m 3s remaining: 2.22s
966: learn: 0.0482587 total: 1m 3s remaining: 2.16s
967: learn: 0.0482500 total: 1m 3s remaining: 2.09s
968: learn: 0.0482373 total: 1m 3s remaining: 2.03s
969: learn: 0.0482161 total: 1m 3s remaining: 1.96s
970: learn: 0.0482095 total: 1m 3s remaining: 1.9s
971: learn: 0.0481939 total: 1m 3s remaining: 1.83s
972: learn: 0.0481842 total: 1m 3s remaining: 1.76s
973: learn: 0.0481776 total: 1m 3s remaining: 1.7s
974: learn: 0.0481723 total: 1m 3s remaining: 1.64s
975: learn: 0.0481654 total: 1m 3s remaining: 1.57s
976: learn: 0.0481611 total: 1m 3s remaining: 1.5s
977: learn: 0.0481550 total: 1m 4s remaining: 1.44s
978: learn: 0.0481407 total: 1m 4s remaining: 1.37s
979: learn: 0.0481281 total: 1m 4s remaining: 1.31s
980: learn: 0.0481096 total: 1m 4s remaining: 1.24s
981: learn: 0.0481066 total: 1m 4s remaining: 1.18s
982: learn: 0.0480850 total: 1m 4s remaining: 1.11s
983: learn: 0.0480813 total: 1m 4s remaining: 1.05s
984: learn: 0.0480682 total: 1m 4s remaining: 982ms
985: learn: 0.0480566 total: 1m 4s remaining: 917ms
986: learn: 0.0480384 total: 1m 4s remaining: 852ms
987: learn: 0.0480320 total: 1m 4s remaining: 786ms
988: learn: 0.0480199 total: 1m 4s remaining: 720ms
989: learn: 0.0480085 total: 1m 4s remaining: 655ms
990: learn: 0.0479959 total: 1m 4s remaining: 590ms
991: learn: 0.0479911 total: 1m 5s remaining: 524ms
992: learn: 0.0479851 total: 1m 5s remaining: 459ms
993: learn: 0.0479672 total: 1m 5s remaining: 393ms
994: learn: 0.0479602 total: 1m 5s remaining: 328ms
995: learn: 0.0479478 total: 1m 5s remaining: 262ms
996: learn: 0.0479352 total: 1m 5s remaining: 197ms
997: learn: 0.0479208 total: 1m 5s remaining: 131ms
998: learn: 0.0478981 total: 1m 5s remaining: 65.6ms
999: learn: 0.0478903 total: 1m 5s remaining: 0us
정확도: 0.9888059701492538
CPU times: user 1min 58s, sys: 1.57 s, total: 2min
Wall time: 1min 7s
그리드 서치를 통해 나온 하이퍼 파라미터 중 ‘depth’: 13, ‘learning_rate’: 0.1 두 개의 파라미터를 조정하였더니 정확도 약 98%가 나왔다.
속도는 다른 부스팅에 비해 비교적 느리지만 정확도는 가장 높은 것을 확인할 수 있다.
결론 RandomForest에서는 하이퍼파라미터 튜닝 후가 65.6ms 로 더 적게 걸렸다. 이를 분석하기위해 기본 파라미터를 살펴보자.
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion=’gini’, max_depth=5, max_features=’auto’, max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100 , n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False)
여기서 우리가 하이퍼 파라미터 튜닝을 위해 넣은 n_estimators= 25는 랜덤포레스트를 구성하는 나무의 갯수를 뜻한다. 기본 파라미터는 100개인데, 튜닝에서 25를 넣어주니 정확도도 더 올라갔고, 속도도 더 줄어듬을 확인 할 수 있었다. 이것은 자료의 양이 많지않아 25개의 트리로 구성하는게 더 빠르고 적합하다 것을 의미한다.
그리고 나는 이 데이터에서 Cat부스트의 성능에 주목했다. cat부스트에서 주목해야할 점은, 다른 모형들에 비해 기본적으로 뛰어난 정확도이다. 이것은 Cat부스트의 특징때문인데, cat부스트는 수치형데이터보다 범주형 데이터 분석에 더 탁월한 성능을 가지고있다. 그래서 하이퍼 파라미터 튜닝후에는 정확도가 0.988인, 거의 1에 가까운 값이 나왔다고 생각한다